Experimental Astronomy

, Volume 43, Issue 3, pp 267–283 | Cite as

Geant4 simulations of a wide-angle x-ray focusing telescope

  • Donghua Zhao
  • Chen Zhang
  • Weimin Yuan
  • Shuangnan Zhang
  • Richard Willingale
  • Zhixing Ling
Original Article

Abstract

The rapid development of X-ray astronomy has been made possible by widely deploying X-ray focusing telescopes on board many X-ray satellites. Geant4 is a very powerful toolkit for Monte Carlo simulations and has remarkable abilities to model complex geometrical configurations. However, the library of physical processes available in Geant4 lacks a description of the reflection of X-ray photons at a grazing incident angle which is the core physical process in the simulation of X-ray focusing telescopes. The scattering of low-energy charged particles from the mirror surfaces is another noteworthy process which is not yet incorporated into Geant4. Here we describe a Monte Carlo model of a simplified wide-angle X-ray focusing telescope adopting lobster-eye optics and a silicon detector using the Geant4 toolkit. With this model, we simulate the X-ray tracing, proton scattering and background detection. We find that: (1) the effective area obtained using Geant4 is in agreement with that obtained using Q software with an average difference of less than 3%; (2) X-rays are the dominant background source below 10 keV; (3) the sensitivity of the telescope is better by at least one order of magnitude than that of a coded mask telescope with the same physical dimensions; (4) the number of protons passing through the optics and reaching the detector by Firsov scattering is about 2.5 times that of multiple scattering for the lobster-eye telescope.

Keywords

X-ray telescope Geant4 Lobster-eye optics Scattering of charged particles Background Sensitivity 

References

  1. 1.
    Zhang, S. -N.: China’s first dedicated astronomy satellite: the hard x-ray modulation telescope (HXMT). AAS 41, 474 (2009)ADSGoogle Scholar
  2. 2.
    Yuan, W., Zhang, C., Feng, H., et al.: Einstein Probe — a Small Mission to Monitor and Explore the Dynamic X-ray Universe. La Sapienza University, Rome, Italy (2014)Google Scholar
  3. 3.
    Zhao, D., Zhang, C., Yuan, W., et al.: Ray tracing simulations for the Wide-field X-ray Telescope of the Einstein Probe mission based on Geant4 and XRTG4. SPIE, 9144 (2014)Google Scholar
  4. 4.
    Yuan, W., Osborne, J.P., ZHang, C., Willingale, R.: Exploring the Dynamic X-ray Universe: Scientific opportunities for the einstein probe Mission[J]. J. Spat. Sci. 36(2), 117–138 (2016)Google Scholar
  5. 5.
    Wolter, H.: Spiegelsysteme streifenden Einfalls als abbildende Optiken für röntgenstrahlen. AnP 445, 94–114 (1952)ADSMATHGoogle Scholar
  6. 6.
    Angel, J. R. P.: Lobster eyes as X-ray telescopes. ApJ 233, 364–373 (1979)ADSCrossRefGoogle Scholar
  7. 7.
    Agostinelli, S., 127 colleagues: GEANT4—A simulation toolkit. NIMA 506, 250–303 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    Fraser, G. W., Brunton, A. N., Lees, J. E., et al.: X-ray focusing using square-pore microchannel plates First observation of cruxiform image structure. NIMPA 324, 404–407 (1993)ADSCrossRefGoogle Scholar
  9. 9.
    Benkhoff, J., van Casteren, J., Hayakawa, H., et al.: BepiColombo—Comprehensive exploration of Mercury: Mission overview and science goals. Planet. Space Sci. 58, 2–20 (2010)Google Scholar
  10. 10.
    Fraser, G.W., Carpenter, J.D., Rothery, D.A., et al.: The mercury imaging X-ray spectrometer (MIXS) on bepicolombo. Planet. Space Sci. 58, 79–95 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    Buis, E. J., Vacanti, G.: X-ray tracing using Geant4. NIMA 599, 260–263 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    Short, A. D., Ambrosi, R. M., Hutchinson, I. B., et al.: Performance of the Swift X-ray Telescope (XRT) Mirror/Detector Combination. AIPC 662, 511–513 (2003)ADSGoogle Scholar
  13. 13.
    Spaan, F. H. P., Willingale, R.: The point spread function of silicon pore x-ray optics. SPIE, 7011 (2008)Google Scholar
  14. 14.
    Martindale, A., 18 colleagues: The Mercury Imaging X-ray Spectrometer: optics design and characterisation. SPIE 7441, 744117 (2009)Google Scholar
  15. 15.
    Willingale, R., Fraser, G. W., Brunton, A. N., et al.: Hard X-ray imaging with microchannel plate optics. ExpA 8, 281–296 (1998)Google Scholar
  16. 16.
    Prigozhin, G. Y., Kissel, S. E., Bautz, M. W., et al.: Radiation damage in the Chandra x-ray CCDs. SPIE 4012, 720–730 (2000)ADSGoogle Scholar
  17. 17.
    Dichter, B. K., Woolf, S.: Grazing angle proton scattering: effects on chandra and xmm-newton x-ray telescopes. ITNS 50, 2292–2295 (2003)ADSGoogle Scholar
  18. 18.
    Turner, M.: A magnetic diverter for Charged Particles on XEUS ESA document SCI-SA/AP/06/0412cv (2006)Google Scholar
  19. 19.
    Prepared by the XMM-Newton Community Support Team with contributions from the entire XMM-Newton Science Operations Centre Team, XMM-Newton Users Handbook, Issue 2.13, 20.07. 2015Google Scholar
  20. 20.
    Willingale, R.: An electron diverter for the Swift Telescope, XRA study note XRT-LUX-RE-011/1 University of Leicester (2000)Google Scholar
  21. 21.
    Burrows, D. N., Hill, J. E., Nousek, J. A., et al.: The Swift X-Ray Telescope. SSRv 120(3-4), 165–195 (2005)ADSGoogle Scholar
  22. 22.
    Lei, F., Nartallo, R., Nieminen, P., et al.: Update on the use of geant4 for the simulation of Low-Energy protons scattering off X-Ray mirrors at grazing incidence angles. ITNS 51, 3408–3412 (2004)ADSGoogle Scholar
  23. 23.
    Firsov, O. B.: Reflection of fast ions from a dense medium at glancing angles. Sov. Phys. Dokl. 11, 732 (1967)ADSGoogle Scholar
  24. 24.
    Nartallo, R., Daly, E., Evans, H., et al.: Low-angle scattering of protons on the XMM-newton optics and effects on the on-board CCD detectors. ITNS 48, 1815–1821 (2001)ADSGoogle Scholar
  25. 25.
    Petrov, A.N., Grigoryan, O.R., Panasyuk, M.I.: Energy spectrum of proton flux near geomagnetic equator at low altitudes. AdSpR 41, 1269–1273 (2008)ADSGoogle Scholar
  26. 26.
    Hiroshi, T., Masaru, M., Shiro, U., et al.: Cosmic-ray background simulation for the CCD camera (SSC) of the MAXI mission onboard the International Space Station. Proc. SPIE 4851, 993 (2003)CrossRefGoogle Scholar
  27. 27.
    Zhao, D., Cordier, B., Sizun, P., et al.: Influence of the Earth on the background and the sensitivity of the GRM and ECLAIRs instruments aboard the Chinese-French mission SVOM. ExpA 34, 705–728 (2012)Google Scholar
  28. 28.
    Campana, R., Feroci, M., Del Monte, E., et al.: Background simulations for the Large Area Detector onboard LOFT. ExpA 36, 451–477 (2013)Google Scholar
  29. 29.
    Miyaji, T., Ishisaki, Y., Ogasaka, Y., et al.: The cosmic X-ray background spectrum observed with ROSAT and ASCA. A&A 334, L13–L16 (1998)ADSGoogle Scholar
  30. 30.
    Barthelmy, S. D., Barbier, L. M., CUMMINGS, J. R., et al.: The Burst Alert Telescope (BAT) on the Swift MIDEX mission. SSRv 120, 143–164 (2005)ADSGoogle Scholar
  31. 31.
    Voges, W., 19 colleagues: The ROSAT all-sky survey bright source catalogue. A&A 349, 389–405 (1999)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.National Astronomical ObservatoriesChinese Academy of SciencesBeijingChina
  2. 2.Institute of High Energy PhysicsChinese Academy of SciencesBeijingChina
  3. 3.Department of Physics and AstronomyUniversity of LeicesterLeicesterUK

Personalised recommendations