How to build a continental scale fireball camera network

Abstract

The expansion of the Australian Desert Fireball Network has been enabled by the development of a new digital fireball observatory based around a consumer digital camera. The observatories are more practical and much more cost effective than previous solutions whilst retaining high imaging performance. This was made possible through a flexible concurrent design approach, a careful focus on design for manufacture and assembly, and by considering installation and maintenance early in the design process. A new timing technique for long exposure fireball observatories was also developed to remove the need for a separate timing subsystem and data integration from multiple instruments. A liquid crystal shutter is used to modulate light transmittance during the long exposure which embeds a timecode into the fireball images for determining fireball arrival times and velocities. Using these observatories, the Desert Fireball Network has expanded to cover approximately 2.5 million square kilometres (around one third of Australia). The observatory and network design has been validated via the recovery of the Murrili Meteorite in South Australia through a systematic search at the end of 2015 and the calculation of a pre-atmospheric entry orbit. This article presents an overview of the design, implementation and performance of the new fireball observatories.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Brownlee, D., Tsou, P., Aléon, J., Alexander, C.M., Araki, T., Bajt, S., Baratta, G.A., Bastien, R., Bland, P., Bleuet, P., et al.: Comet 81p/wild 2 under a microscope. Science 314, 1711–1716 (2006)

    ADS  Article  Google Scholar 

  2. 2.

    Yoshikawa, M., Fujiwara, A., Kawaguchi, J.: Hayabusa and its adventure around the tiny asteroid Itokawa. Highlights Astron. 14, 323–324 (2007)

    ADS  Google Scholar 

  3. 3.

    Borovička, J., Spurný, P., Brown, P.: Small near-Earth asteroids as a source of meteorites, others, Asteroids IV, University of Arizona, Tucson, pp. 257–280 (2015)

  4. 4.

    Trigo-Rodriguez, J.M., Lyytinen, E., Gritsevich, M., Moreno-Ibáñez, M., Bottke, W.F., Williams, I., Lupovka, V., Dmitriev, V., Kohout, T., Grokhovsky, V.: Orbit and dynamic origin of the recently recovered annama’s h5 chondrite. Mon. Not. R. Astron. Soc. 449, 2119–2127 (2015)

    ADS  Article  Google Scholar 

  5. 5.

    Meteoritical Society, Creston (2015)

  6. 6.

    Spurný, P., Borovička, J., Haloda, J., Shrbený, L., Heinlein, D.: Two Very Precisely Instrumentally Documented Meteorite Falls: žďar nad Sázavou and Stubenberg-Prediction and Reality. LPI Contrib. 1921 (2016)

  7. 7.

    Spurný, P., Borovička, J., Baumgarten, G., Haack, H., Heinlein, D., Sørensen, A.: Atmospheric trajectory and heliocentric orbit of the Ejby meteorite fall in Denmark on February 6, 2016 Planetary and Space Science (2016)

  8. 8.

    Bland, P., Towner, M., Sansom, E., Devillepoix, H., Howie, R., Paxman, J., Cupak, M., Benedix, G., Cox, M., Jansen-Sturgeon, T., et al.: Fall and recovery of the murrili meteorite, and an update on the desert fireball network. LPI Contributions 1921 (2016)

  9. 9.

    Bevan, A., Binns, R.: Meteorites from the Nullarbor Region, Western Australia: I. A review of past recoveries and a procedure for naming new finds. Meteoritics 24, 127–133 (1989)

    ADS  Article  Google Scholar 

  10. 10.

    Bland, P., Spurný, P., Bevan, A., Howard, K., Towner, M., Benedix, G., Greenwood, R., Shrbený, L., Franchi, I., Deacon, G., et al.: The Australian Desert Fireball Network: a new era for planetary science. Aust. J. Earth Sci. 59, 177–187 (2012)

    ADS  Article  Google Scholar 

  11. 11.

    Bland, P.A., Spurný, P., Towner, M.C., Bevan, A.W., Singleton, A.T., Bottke, W.F., Greenwood, R.C., Chesley, S.R., Shrbený, L., Borovička, J., et al.: An anomalous basaltic meteorite from the innermost main belt. Science 325, 1525–1527 (2009)

    ADS  Article  Google Scholar 

  12. 12.

    Towner, M., Bland, P., Spurný, P., Benedix, G., Dyl, K., Greenwood, R., Gibson, J., Franchi, I., Shrbený, L., Bevan, A., et al.: Mason Gully: The second meteorite recovered by the Desert Fireball Network. Meteorit. Planet Sci. Suppl. 74, 5124 (2011)

    ADS  Google Scholar 

  13. 13.

    Dyl, K.A., Benedix, G.K., Bland, P.A., Friedrich, J.M., Spurný, P., Towner, M.C., O’Keefe, M.C., Howard, K., Greenwood, R., Macke, R.J., et al.: Characterization of Mason Gully (H5): The second recovered fall from the Desert Fireball Network. Meteorit. Planet. Sci. 51, 596–613 (2016)

    ADS  Article  Google Scholar 

  14. 14.

    Hughes, S.: Catchers of the Light: The Forgotten Lives of the Men and Women Who First Photographed the Heavens. Stefan Hughes (2012)

  15. 15.

    Jacchia, L.G., Whipple, F.L.: The Harvard photographic meteor programme. Vistas Astron. 2, 982–994 (1956)

    ADS  Article  Google Scholar 

  16. 16.

    Halliday, I.: Photographic fireball networks Evolutionary and physical properties of meteoroids: The proceedings of the International Astronomical Union’s colloquium # 13. pp. 14–17, 1971, NASA SP, edited by C. Hemenway, P. Millman, A. Cook, and I. A. Union (Scientific and Technical Information Office, National Aeronautics and Space Administration; [for sale by the Supt. of Docs., U.S. Govt. Print. Off.], 1973). held at the State University of New York, Albany, NY

  17. 17.

    Halliday, I., Blackwell, A., Griffin, A.: The Innisfree meteorite and the Canadian camera network. J. Royal Astron. Soc. Can. 72, 15–39 (1978)

    ADS  Google Scholar 

  18. 18.

    Sansom, E.K., Rutten, M.G., Bland, P.A.: Analysing Meteoroid Flights Using Particle Filters, The Astronomical Journal (in press)

  19. 19.

    Ceplecha, Z.: Statistical observations of meteors 1951. Bullet. Astron. Instit. Czechoslovakia 3, 53 (1952)

    ADS  Google Scholar 

  20. 20.

    Ceplecha, Z.: Photographic Geminids 1955. Bullet. Astron. Instit. Czechoslovakia 8, 51 (1957)

    ADS  Google Scholar 

  21. 21.

    Ceplecha, Z., Rajchl, J., Sehnal, L.: Complete data on bright meteor 15761. Bullet. Astron. Instit. Czechoslovakia 10, 204 (1959)

    ADS  Google Scholar 

  22. 22.

    Spurný, P.: Photographic monitoring of fireballs in central europe, in Optical Science, Engineering and Instrumentation’97, pp. 144–155. International Society for Optics and Photonics (1997)

  23. 23.

    Ceplecha, Z., Rajchl, J., Sehnal, L.: New Czechoslovak meteorite “Luhy”. Bullet. Astron. Instit. Czechoslovakia 10, 147 (1959)

    ADS  Google Scholar 

  24. 24.

    Ceplecha, Z.: Multiple fall of Přiribram meteorites photographed. 1. Doublestation photographs of the fireball and their relations to the found meteorites. Bullet. Astron. Instit. Czechoslovakia 12, 21 (1961)

    ADS  Google Scholar 

  25. 25.

    Ceplecha, Z., Rajchl, J.: Programme of fireball photography in CzechoSlovakia. Bullet. Astron. Instit. Czechoslovakia 16, 15 (1965)

    ADS  Google Scholar 

  26. 26.

    McCrosky, R.E., Boeschenstein, J.H.: The prairie meteorite network. Opt. Eng. 3, 304127 (1965)

    Article  Google Scholar 

  27. 27.

    McCrosky, R., Posen, A., Schwartz, G., Shao, C. -Y.: Lost City meteorite—Its recovery and a comparison with other fireballs. J. Geophys. Res. 76, 4090–4108 (1971)

    ADS  Article  Google Scholar 

  28. 28.

    Halliday, I., Griffin, A.A., Blackwell, A.T.: Detailed data for 259 fireballs from the Canadian camera network and inferences concerning the in ux of large meteoroids. Meteorit. Planet. Sci. 31, 185–217 (1996)

    ADS  Article  Google Scholar 

  29. 29.

    Halliday, I.: Geminid fireballs and the peculiar asteroid 3200 Phaethon. Icarus 76, 279294 (1988)

    Article  Google Scholar 

  30. 30.

    Campbell-Brown, M., Hildebrand, A.: A new analysis of data from the meteorite observation and recovery project. Bullet. Amer. Astron. Soc. 36, 1142 (2004)

    ADS  Google Scholar 

  31. 31.

    Oberst, J., Molau, S., Heinlein, D., Gritzner, C., Schindler, M., Spurný, P., Ceplecha, Z., Rendtel, J., Betlem, H.: The European Fireball Network: current status and future prospects. Meteorit. Planet. Sci. 33, 49–56 (1998)

    ADS  Article  Google Scholar 

  32. 32.

    Spurný, P., Borovička, J., Shrbený, L.: Automation of the Czech part of the European fireball network: equipment, methods and first results. Proc. Int. Astron. Union 2, 121–130 (2006)

    Article  Google Scholar 

  33. 33.

    Ceplecha, Z., Revelle, D.O.: Fragmentation model of meteoroid motion, mass loss, and radiation in the atmosphere. Meteorit. Planet. Sci. 40, 35–54 (2005)

    ADS  Article  Google Scholar 

  34. 34.

    Spurný, P., Oberst, J., Heinlein, D.: Photographic observations of Neuschwanstein, a second meteorite from the orbit of the Příbram chondrite. Nature 423, 151–153 (2003)

    ADS  Article  Google Scholar 

  35. 35.

    Borovička, J., Tóth, J., Igaz, A., Spurný, P., Kalenda, P., Haloda, J., Svoreň, J., Kornoš, L., Silber, E., Brown, P., et al.: The Košice meteorite fall: Atmospheric trajectory, fragmentation, and orbit. Meteorit. Planet. Sci. 48, 1757–1779 (2013)

    ADS  Article  Google Scholar 

  36. 36.

    Spurný, P., Borovička, J., Kac, J., Kalenda, P., Atanackov, J., Kladnik, G., Heinlein, D., Grau, T.: Analysis of instrumental observations of the Jesenice meteorite fall on April 9, 2009. Meteorit. Planet. Sci. 45, 1392–1407 (2010)

    ADS  Article  Google Scholar 

  37. 37.

    Borovička, J., Spurný, P., Šegon, D., Andreič, v., Kac, J., Korlevič, K., Atanackov, J., Kladnik, G., Mucke, H., Vida, D., et al.: The instrumentally recorded fall of the Križevci meteorite, Croatia, February 4, 2011. Meteorit. Planet. Sci. 50, 1244–1259 (2015)

    ADS  Article  Google Scholar 

  38. 38.

    Spurný, P., Bland, P.A., Shrbený, L., Borovička, J., Ceplecha, Z., Singelton, A., Bevan, A.W., Vaughan, D., Towner, M.C., McClafferty, T.P., et al.: The Bunburra Rockhole meteorite fall in SW Australia: fireball trajectory, luminosity, dynamics, orbit, and impact position from photographic and photoelectric records. Meteorit. Planet. Sci. 47, 163–185 (2012)

    ADS  Article  Google Scholar 

  39. 39.

    Weryk, R., Brown, P., Domokos, A., Edwards, W., Krzeminski, Z., Nudds, S., Welch, D.: The Southern Ontario all-sky meteor camera network. Earth Moon, Planets 102, 241–246 (2008)

    ADS  Article  Google Scholar 

  40. 40.

    Toth, J., Kornos, L., Piffl, R., Koukal, J., Gajdos, S., Popek, M., Majchrovic, I., Zima, M., Vilagi, J., Kalmancok, D., et al.: Slovak video meteor networkstatus and results: Lyrids 2009, geminids 2010, quadrantids 2011 Proceedings of the International Meteor Conference, 30th IMC, pp 82–84, Sibiu, Romania, 2011 (2012)

  41. 41.

    Gritsevich, M., Lyytinen, E., Moilanen, J., Kohout, T., Dmitriev, V., Lupovka, V., Midtskogen, S., Kruglikov, N., Ischenko, A., Yakovlev, G., et al.: First meteorite recovery based on observations by the Finnish Fireball Network Proceedings of the International Meteor Conference pp. 162–169 (2014)

    Google Scholar 

  42. 42.

    Colas, F., Zanda, B., Vaubaillon, J., Bouley, S., Marmo, C., Audureau, Y., Kwon, M.K., Rault , J.-L., Caminade, S., Vernazza, P., et al.: French fireball network FRIPON. In: Rault, J.-L., Roggemans, P. (eds.) Proceedings of the International Meteor Conference. International Meteor Organization, ISBN 978-2-87355-029-5, pp. 37–40, Vol. 1, Mistelbach, Austria (2015)

  43. 43.

    Kokhirova, G., Babadzhanov, P., Khamroev, U.K.: Tajikistan fireball network and results of photographic observations. Solar Syst. Res. 49, 275–283 (2015)

    ADS  Article  Google Scholar 

  44. 44.

    Jenniskens, P., Gural, P., Dynneson, L., Grigsby, B., Newman, K., Borden, M., Koop, M., Holman, D.: CAMS: Cameras for Allsky Meteor Surveillance to establish minor meteor showers. Icarus 216, 40–61 (2011)

    ADS  Article  Google Scholar 

  45. 45.

    Brown, P., McCausland, P., Fries, M., Silber, E., Edwards, W., Wong, D., Weryk, R., Fries, J., Krzeminski, Z.: The fall of the Grimsby meteorite— I: Fireball dynamics and orbit from radar, video, and infrasound records. Meteorit. Planet. Sci. 46, 339–363 (2011)

    ADS  Article  Google Scholar 

  46. 46.

    Jenniskens, P., Rubin, A.E., Yin, Q.-Z., Sears, D.W., Sandford, S.A., Zolensky, M.E., Krot, A.N., Blair, L., Kane, D., Utas, J., et al.: Fall, recovery, and characterization of the Novato L6 chondrite breccia. Meteorit. Planet. Sci. 49, 1388–1425 (2014)

    ADS  Article  Google Scholar 

  47. 47.

    Flye-Sainte Marie, C.: Solution to problem number 48. L’Intermédiaire des Mathématiciens 1, 107–110 (1894)

    Google Scholar 

  48. 48.

    De Bruijn, N.G., Erdos, P.: A combinatorial problem, Koninklijke Nederlandse Akademie v. Wetenschappen 49, 758–764 (1946)

    Google Scholar 

  49. 49.

    Van Aardenne-Ehrenfest, T., De Bruijn, N.G.: Circuits and trees in oriented linear graphs. Simon Stevin: Wis-en Natuurkundig Tijdschr. 28, 203 (1951)

  50. 50.

    Howie, R.M., Paxman, J., Bland, P.A., Towner, M.C., Sansom, E.K., Devillepoix, H.A.R.: Sub-millisecond fireball timing using de Bruijn timecodes. Meteoritics and Planetary Science (2017)

  51. 51.

    Ceplecha, Z.: Geometric, dynamic, orbital and photometric data on meteoroids from photographic fireball networks. Bullet. Astron. Instit. Czechoslovakia 38, 222–234 (1987)

    ADS  Google Scholar 

  52. 52.

    Borovicka, J.: The comparison of two methods of determining meteor trajectories from photographs. Bullet. Astron. Instit. Czechoslovakia 41, 391–396 (1990)

    ADS  Google Scholar 

  53. 53.

    Gural, P.S.: A new method of meteor trajectory determination applied to multiple unsynchronized video cameras. Meteorit. Planet. Sci. 47, 1405–1418 (2012)

    Article  Google Scholar 

  54. 54.

    Wetherill, G., ReVelle, D.: Which fireballs are meteorites? A study of the Prairie Network photographic meteor data. Icarus 48, 308–328 (1981)

    ADS  Article  Google Scholar 

  55. 55.

    Brown, P., Marchenko, V., Moser, D.E., Weryk, R., Cooke, W.: Meteorites from meteor showers: A case study of the Taurids. Meteorit. Planet. Sci. 48, 270–288 (2013)

    ADS  Article  Google Scholar 

  56. 56.

    Halliday, I., Blackwell, A.T., Griffin, A.A.: The typical meteorite event, based on photographic records of 44 fireballs. Meteoritics 24, 65–72 (1989)

    ADS  Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Arabana people for assistance recovering and naming the Murrili meteorite, the generous pastoral station owners for hosting observatories and the other volunteers that have made this project possible. This research was supported by the Australian Research Council through the Australian Laureate Fellowships scheme and receives institutional support from Curtin University. The authors also wish to thank the anonymous reviewer for their constructive comments which have significantly improved the quality of this manuscript. The authors have no conflicts of interest to declare.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robert M. Howie.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Howie, R.M., Paxman, J., Bland, P.A. et al. How to build a continental scale fireball camera network. Exp Astron 43, 237–266 (2017). https://doi.org/10.1007/s10686-017-9532-7

Download citation

Keywords

  • Meteors
  • Meteorites
  • Fireballs
  • Bolides
  • Camera networks
  • Autonomous observatories
  • Distributed networks