Experimental Astronomy

, Volume 43, Issue 2, pp 201–210 | Cite as

Gaseous electron multiplier gain characteristics using low-pressure Ar/CO2

  • T. RogersEmail author
  • R. McEntaffer
  • T. Schultz
  • J. McCoy
  • D. Miles
  • J. Tutt
Original Article


Gaseous Electron Multiplier detectors, or GEMs, show promise for use on space-based X-ray missions. Operating pressure strongly affects the gain of the detector and must be optimized for best performance. We have measured the gain characteristics of a GEM detector at various pressures below atmosphere using a mixture of Ar:CO2 with the goal of maximizing gain to push GEM capabilities to the lowest energies possible. This paper discusses our tests, results, and their implications for choosing a detector pressure. We found that at any operating pressure the detector voltage can be adjusted to achieve roughly the same maximum gain prior to the onset of electrical discharges. We also find that the gain varies substantially by spatial location across the detector, but this variation is insensitive to changes in pressure allowing it to be calibrated and corrected if necessary. The detector pressure can therefore be optimized in the interest of other performance parameters such as leak rate, window stress, power requirements, or quantum efficiency without concern for negatively affecting the gain. These results can inform the choice of operating pressure and voltage for GEMs used onboard future space missions.


Gaseous electron multiplier X-ray detectors X-ray spectroscopy 



This work was supported by NASA grant NNX13AD03G. The authors gratefully acknowledge the support of Adrian Martin, John Valerga, and Oswald Siegmund of Sensor Sciences, LLC. for manufacturing the detector and associated electronics used in this work and for providing technical assistance. We also thank Ben Zeiger, Phil Oakley, and Webster Cash for sharing their GEMs expertise with us and helping to make this work possible.


  1. 1.
    Bellazzini, R., Brez, A., Gariano, G., Latronico, L., Lumb, N., Spandre, G., Massai, M., Raffo, R., Spezziga, M.: What is the real gas gain of a standard gem? Nucl. Instrum. Methods Phys. Res. 419, 429–437 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    Bellazzini, R., Costa, E., Matt, G., Tagliaferri, G.: A polarimeter for ixo. In: X-ray Polarimetry: A New Window in Astrophysics. Cambridge University Press (2010)Google Scholar
  3. 3.
    Bondar, A., Buzulutskov, A., Sauli, F., Shekhtman, L.: High- and low-pressure operation of the gas electron multiplier. Nuc. Inst. Methods Phys. Res. 419, 418–422 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    Bondar, A., Buzulutskov, A., Shekhtman, L.: High pressure operation of the triple-gem detector in pure ne, ar and xe. Nucl. Instrum. Methods Phys. Res. 481, 200–203 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    Bressan, A., Buzulutskov, A., Ropelewski, L., Sauli, F., Shekhtman, L.: High gain operation of gem in pure argon. Nuc. Inst. Methods Phys. Res. 423, 119–124 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    Chechik, R., Breskin, A., Garty, G., Mattout, J., Sauli, F., Shefer, E.: First results on the gem operated at low gas pressures. Nuc. Inst. Methods Phys. Res. 419, 423–428 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    Cortesi, M., Yurkon, J., Stolz, A.: Operation of a thgem-based detector in low-pressure helium. J. Instrum., 10 (2015)Google Scholar
  8. 8.
    Costa, E., Soffitta, P., Bellazzini, R., Brez, A., Lumb, N., Spandre, G.: A efficient photoelectric x-ray polarimeter for the study of black holes and neutron stars. Nature 411, 662–665 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    Jahoda, K.: The gravity and extreme magnetism small explorer. Proc. SPIE, 7732 (2010)Google Scholar
  10. 10.
    Rogers, T., McEntaffer, R., Schultz, T., Zeiger, B., Oakley, P., Cash, W.: The ogress sounding rocket payload. Proc. SPIE, 8859 (2013)Google Scholar
  11. 11.
    Sauli, F.: Principles of operation of multiwire proportional and drift chambers. Lect. Acad. Train. Program CERN, 77–09 (1977)Google Scholar
  12. 12.
    Sauli, F.: Gem: A new concept for electron amplification in gas detectors. Nucl. Instrum. Methods Phys. Res. 386, 531–534 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    Shalem, C., Chechik, R., Breskin, A., Michaeli, K., Ben-Haim, N.: Advances in thick gem-like gaseous electron multipliers part ii: Low-pressure operation. Nuc. Inst. Methods Phys. Res. 558, 468–474 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    Soffitta, P.: Xipe: the x-ray imaging polarimetry explorer. Exper. Astron. 36, 523–567 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    Tamagawa, T., Tsunoda, N., Hayato, A., Hamagaki, H., Inuzuka, M., Miyasaka, H., Sakurai, I., Tokanai, F., Makishima, K.: Development of gas electron multiplier foils with a laser etching technique. Nuc. Inst. Methods Phys. Res. 560, 418–424 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    Tamagawa, T., Hayato, A., Abe, K., Iwamoto, S., Nakamura, S., Harayama, A., Iwahashi, T., Makishima, K., Hamagaki, H., Yamaguchi, Y.: Gain properties of gas electron multipliers (gems) for space applications. Proc. SPIE, 7011 (2008)Google Scholar
  17. 17.
    Tamagawa, T., Hayato, A., Asami, F., Abe, K., Iwamoto, S., Nakamura, S., Harayama, A., Iwahashi, T., Konami, S., Hamagaki, H., Yamaguchi, Y., Tawara, H., Makishima, K.: Development of thick-foil and fine-pitch gems with a laser etching technique. Nuc. Inst. Methods Phys. Rese. 608, 390–396 (2009)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • T. Rogers
    • 1
    Email author
  • R. McEntaffer
    • 2
  • T. Schultz
    • 2
  • J. McCoy
    • 2
  • D. Miles
    • 2
  • J. Tutt
    • 2
  1. 1.University of ColoradoSt. BoulderUSA
  2. 2.Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations