Skip to main content
Log in

A proposed method for measurement of cosmic-ray mass composition based on geomagnetic spectroscopy

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

The effect of the geomagnetic Lorentz force on the muon component of extensive air shower (EAS) has been studied in a Monte Carlo generated simulated data sample. This geomagnetic field affects the paths of muons in an EAS, causing a local contrast or polar asymmetry in the abundance of positive and negative muons about the shower axis. The asymmetry can be approximately expressed as a function of transverse separation between the positive and negative muons barycentric positions in the EAS through opposite quadrants across the shower core in the shower front plane. In the present study, it is found that the transverse muon barycenter separation and its maximum value obtained from the polar variation of the parameter are higher for iron primaries than protons for highly inclined showers. Hence, in principle, these parameters can be exploited to the measurement of primary cosmic-ray mass composition. Possibility of practical realization of the proposed method in a real experiment is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abraham, J., et al.: The Pierre Auger collaboration: measurement of the depth of maximum of extensive air showers above 1018 eV. Phys. Rev. Lett. 104, 091101 (2010)

    Article  ADS  Google Scholar 

  2. Aielli, G., et al.: Highlights from the ARGO-YBJ experiment. Nucl. Instr. Meth. A 661, S50 (2012)

    Article  ADS  Google Scholar 

  3. Allan, H.R., et al.: Radio pulse production in extensive air showers. Nature 222, 635–637 (1969)

    Article  ADS  Google Scholar 

  4. Allkofer, O. C., et al.: Geomagnetic influence on the muon charge ratio of cosmic rays. J. Geophys. Res. 90, 3537 (1985)

    Article  ADS  Google Scholar 

  5. Antoni, T., et al.: Measurement of attenuation and absorption lengths with the KASCADE experiment. Astropart. Phys. 19, 703–714 (2003)

    Article  ADS  Google Scholar 

  6. Apel, W. D., et al.: Comparison of measured and simulated lateral distributions for electrons and muons with KASCADE. Astropart. Phys. 24, 467–483 (2006)

    Article  ADS  Google Scholar 

  7. Apel, W.D., et al.: Lateral distributions of EAS muons (E μ >800 MeV) measured with the KASCADE-Grande muon tracking detector in the primary energy range 1016−1017 eV. Astropart. Phys. 65, 55–63 (2015)

    Article  ADS  Google Scholar 

  8. Arteaga, J.C., et al.: KASCADE-Grande Coll.: muon spectra reconstructed from inclined air showers measured by KASCADE-Grande. Proc. of 30th ICRC Mexico 4, 203–206 (2008)

    Google Scholar 

  9. Arteaga-Velázquez, J.C., et al.: The constant intensity cut method applied to the KASCADE-Grande muon data. Nucl. Phys. B (Proc. Suppl.) 196, 183–186 (2009)

    Article  ADS  Google Scholar 

  10. Bhadra, A., et al.: The NBU extensive air shower telescope for observation of UHE point sources. Nucl. Instr. Meth. Phys. Res. A 414, 233 (1998)

    Article  ADS  Google Scholar 

  11. Bleicher, M., et al.: Relativistic hadron-hadron collisions in the ultra-relativistic quantum molecular dynamics model. J. Phys. G: Nucl. Part. Phys. 25, 1859 (1999)

    Article  ADS  Google Scholar 

  12. Bowden, C.C.G., et al.: The effect of the geomagnetic field on TeV gamma-ray detection. J. Phys. G: Nucl. Part. Phys. 18, L55 (1992)

    Article  ADS  Google Scholar 

  13. Browning, R., Turver, K. E.: Cherenkov radiation from computer simulations of the γ-ray initiated atmospheric showers. Nuovo Cimento A 38, 223 (1977)

    Article  ADS  Google Scholar 

  14. Capdevielle, J N, Gall, Le, C, Sanosyan, Kh N: Simulation of extensive air showers at ultra-high energy using the CORSIKA Monte Carlo code. Astropart. Phys. 13, 259 (2000)

    Article  ADS  Google Scholar 

  15. Capdevielle, J. N., Dey, R. K., Bhadra, A.: Estimating primary mass composition of cosmic rays using geomagnetic spectroscopy. 33rd Int. Cosmic Ray Conf. ISBN-978-85-89064-29-3 (2013)

  16. Chadwick, P.M., et al.: Geomagnetic effects on atmospheric Cherenkov images. J. Phys. G: Nucl. Part. Phys. 25, 1223 (1999)

    Article  ADS  Google Scholar 

  17. Cillis, A., Sciutto, S.J.: Air showers and geomagnetic field. J. Phys. G: Nucl. Part. Phys. 26, 309 (2000)

    Article  ADS  Google Scholar 

  18. Cocconi, G.: Influence of the earth’s magnetic field on the extensive air showers. Phys. Rev. 93, 646 (1954)

    Article  ADS  Google Scholar 

  19. Colgate, S.A.: The detection of high-energy cosmic-ray showers by the combined optical and electromagnetic pulse. J. Geophys. Res. 72, 4869 (1967)

    Article  ADS  Google Scholar 

  20. Dam, S., Dey, R.K., Bhadra, A.: Simulation studies on the distortion of EAS muons by the earth’s magnetic field. In: Mandal, J K et al. (eds.) Proc. Information Systems Design and Intelligent Applications, vol. 339, p 1 (2015)

  21. Dey, R.K., Dam, S., Ray, S.: Imprint of the atmospheric attenuation process on electron distribution in EAS. Indian J Phys. (2016). doi:10.1007/s12648-016-0920-z

    Google Scholar 

  22. Engel, R., Heck, D., Pierog, T.: Extensive air showers and hadronic interactions at high energy. Annual Rev. Nucl. Part. Sc. 61, 467–489 (2011)

    Article  ADS  Google Scholar 

  23. Fassó, A., et al.: FLUKA: status and prospects for hadronic applications. In: Proc. Monte Carlo 2000 Conf. (Lisbon), p 955. Springer, Berlin (2001)

  24. Greider, P.K.F.: Extensive air showers: a tutorial, reference manual and data book, vol. 1. ISBN-978-3-540-76940-8 (2010)

  25. Greisen, K.: Progress in Cosmic Ray Physics III. North Holland, Amsterdam (1956)

  26. Gupta, S.K., et al.: GRAPES-3: a high-density air shower array for studies on the structure in the cosmic-ray energy spectrum near knee. Nucl. Instr. Meth. A 540, 311 (2005)

    Article  ADS  Google Scholar 

  27. Heck, D, et al.: The CORSIKA Air Shower Simulation Program Forchungszantrum Karlsruhe Report FZK6019 (1998)

  28. Hess, V.F.: Uber Beobachtungen der durchdringenden Strahlung bei sieben freiballonfahrten. Phys. Z. 13, 1084–1091 (1912)

    Google Scholar 

  29. Ivanov, A.A., et al.: Azimuthal modulation of the event rate of cosmic-ray extensive air showers by the geomagnetic field. JETP Letts. 69, 288 (1999)

    Article  ADS  Google Scholar 

  30. Kalmykov, N. N., Ostapchenko, S. S., Pavlov, A.I.: Quark-gloun-string model and EAS simulation problems at ultra-high energies. Nucl. Phys. B 52, 17 (1997)

    Article  Google Scholar 

  31. Kobal, M: A thinning method using weight limitations for air-shower simulations. Astropart. Phys. 15, 259 (2001)

    Article  ADS  Google Scholar 

  32. Lang, M.J., et al.: A search for a geomagnetic effect on the sensitivity of the atmospheric Cherenkov imaging technique. J. Phys. G: Nucl. Part. Phys. 20, 1841 (1994)

    Article  ADS  Google Scholar 

  33. Ave, M, Vasquez, R A, Zas, E: Modeling horizontal air showers induced by cosmic-rays. Astropart. Phys. 14, 91 (2000)

    Article  ADS  Google Scholar 

  34. Montanus, J.M.C: An extended Heitler-Matthews model for the full hadronic cascade in cosmic air showers. Astropart. Phys. 59, 4–11 (2014)

    Article  ADS  Google Scholar 

  35. Montanus, J.M.C.: The center of lateral iso-density contours for inclined cosmic air showers. Exper. Astron. 41(1), 159–184 (2016)

    Article  ADS  Google Scholar 

  36. Muniz, J.A., et al.: Radio pulses from ultra-high energy atmospheric showers as the superposition of Askaryan and geomagnetic mechanisms. Astropart. Phys. 59, 29 (2014)

    Article  ADS  Google Scholar 

  37. National Aeronautics and Space Administration (NASA): US standard atmosphere Technical ReportNASA-TM-X-74335 (1976)

  38. Nelson, W.R., et al.: The EGS4 Code System Report SLAC265. Stanford Linear Accelerator Center, Stanford (1985)

  39. Ostapchenko, S.S.: QGSJET-II: physics, recent improvements, and results for air showers. EPJ Web Conf. 52, 02001 (2013)

    Article  Google Scholar 

  40. Pierog, T., Werner, K.: Muon production in extended air shower simulations. Phys. Rev. Lett. 101, 171101 (2008)

    Article  ADS  Google Scholar 

  41. Pierog, T., et al.: EPOS-LHC: test of collective hadronization with data measured at the CERN large Hadron Collider. Phys. Rev. C 92(3), 034906 (2015)

    Article  ADS  Google Scholar 

  42. Porter, N.A.: Geomagnetic efects on the angular distribution of Cerenkov light from extensive air showers. Lettere Al Nuovo Cimento Series 2 8, 481 (1973)

    Article  Google Scholar 

  43. Rebel, H., et al.: The muon charge ratio in cosmic ray air showers. J. Phys. G: Nucl. Part. Phys. 35, 085203 (2008)

    Article  ADS  Google Scholar 

  44. Sima, O., et al.: Restoring the azimuthal symmetry of lateral distributions of charged particles in the range of the KASCADE-Grande experiment. Nucl. Instru. Meth. A 638, 147 (2011)

    Article  ADS  Google Scholar 

  45. The ALICE collaboration: Study of cosmic ray events with high muon multiplicity using the ALICE detector at the CERN Large Hadron Collider. J. Cos. Astropart. Phys. 01, 32 (2016)

    ADS  Google Scholar 

  46. The Pierre Auger collaboration: The effect of the geomagnetic field on cosmic ray energy estimates and large scale anisotropy searches on data from the Pierre Auger Observatory. JCAP 11, 022 (2011)

    Article  Google Scholar 

  47. The Pierre Auger Collaboration: The Pierre Auger cosmic ray observatory. Nucl. Instr. Meth. A 798, 172–213 (2015)

    Article  ADS  Google Scholar 

  48. Werner, K., et al.: Parton ladder splitting and the rapidity dependence of transverse momentum spectra in deuteron-gold collisions at the BNL relativistic heavy ion collider. Phys. Rev. C 74, 044902 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous referee for detailed and helpful comments that improves the manuscript substantially. RKD would like to thank Prof. J. N. Capdevielle, APC, University Paris-Diderot for useful correspondence and Dr. A. Bhadra, HECRRC, NBU for useful comments. This work is supported by the Science and Engineering Research Board of India through Grant no. EMR/2015/001390.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajat K. Dey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dey, R.K., Dam, S. A proposed method for measurement of cosmic-ray mass composition based on geomagnetic spectroscopy. Exp Astron 43, 75–98 (2017). https://doi.org/10.1007/s10686-016-9521-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-016-9521-2

Keywords

Navigation