Skip to main content

The optical depth sensor (ODS) for column dust opacity measurements and cloud detection on martian atmosphere


A lightweight and sophisticated optical depth sensor (ODS) able to measure alternatively scattered flux at zenith and the sum of the direct flux and the scattered flux in blue and red has been developed to work in martian environment. The principal goals of ODS are to perform measurements of the daily mean dust opacity and to retrieve the altitude and optical depth of high altitude clouds at twilight, crucial parameters in the understanding of martian meteorology. The retrieval procedure of dust opacity is based on the use of radiative transfer simulations reproducing observed changes in the solar flux during the day as a function of 4 free parameters: dust opacity in blue and red, and effective radius and effective width of dust size distribution. The detection of clouds is undertaken by looking at the time variation of the color index (CI), defined as the ratio between red and blue ODS channels, at twilight. The retrieval of altitude and optical depth of clouds is carried out using a radiative transfer model in spherical geometry to simulate the CI time variation at twilight. Here the different retrieval procedures to analyze ODS signals, as well as the results obtained in different sensitivity analysis are presented and discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20


  1. 1.

    Clancy, R.T., Grossman, A.W., Wolff, M.J., James, P.B., Rudy, D.J., Billawala, Y.N., Sandor, B.J., Lee, S.W., Muhleman, D.O.: Water vapor saturation at low latitudes around aphelion: A key to Mars climate? Icarus 122, 36–62 (1996)

    ADS  Article  Google Scholar 

  2. 2.

    Clancy, R.T., Wolff, M.J., Christensen, P.R.: Mars aerosol studies with the MGS TES emission phase function observations: Optical depths, particle sizes, and ice cloud types versus latitude and solar longitude. J. Geophys. Res. (2003). doi:10.1029/2003JE002058

    Google Scholar 

  3. 3.

    Colburn, D.S., Pollack, J.B., Haberle, R.M.: Diurnal variations in optical depth at Mars. Icarus (1989). doi:10.1016/0019-1035(89)90114-0

    Google Scholar 

  4. 4.

    Gierasch, P.J., Goody, R.M.: The effect of dust on the temperature of the Martian atmosphere. J. Atmos. Sci. 29, 400–402 (1972)

    ADS  Article  Google Scholar 

  5. 5.

    Hansen, J.E., Travis, L.D.: Light scattering in planetary atmospheres. Space Sci. Rev. (1974). doi:10.1007/BF00168069

    Google Scholar 

  6. 6.

    Korablev, O.I., Krasnopolsky, V.A., Rodin, A.V.: Vertical structure of Martian dust measured by solar infrared occultations from the Phobos spacecraft. Icarus 102, 76–87 (1993)

    ADS  Article  Google Scholar 

  7. 7.

    Lemmon, M.T., Wolff, M.J., Smith, M.D., Clancy, R.T., Banfield, D., Landis, G.A., Ghosh, A., Smith, P.H., Spanovich, N., Whitney, B., Whelley, P., Greeley, R., Thompson, S., Bell, J.F., Squyres, S.W.: Atmospheric imaging results from the Mars exploration rovers: Spirit and Opportunity. Science 306, 1753–1756 (2004)

    ADS  Article  Google Scholar 

  8. 8.

    Lemmon, M.T., Wolff, M.J., Bell, J.F., Smith, M.D., Cantor, B.A., Smith, P.H.: Dust aerosol, clouds, and the atmospheric optical depth record over 5 Mars years of the Mars Exploration Rover mission. Icarus 251, 96–111 (2015)

    ADS  Article  Google Scholar 

  9. 9.

    Madeleine, J.‐.B., Forget, F., Millour, E., Montabone, L., Wolff, M.J.: Revisiting the radiative impact of dust on Mars using the LMD Global Climate Model. J. Geophys. Res. (2011). doi:10.1029/2011JE003855

    Google Scholar 

  10. 10.

    Maria, J.-L., Tran, T.T., Pommereau, J.-P., Rannou, P., Malique, C., Correia, J.J., Porteneuve, J.: Technical aspect of the optical depth sensor. Adv. Space. Res. (2006). doi:10.1016/j.asr.2005.07.079

    Google Scholar 

  11. 11.

    Markiewicz, W.J., Sablotny, R.M., Keller, H.U., Thomas, N., Titov, D., Smith, P.H.: Optical properties of the Martian aerosols as derived from Imager for Mars Pathfinder midday sky brightness data. J. Geophys. Res. (1999). doi:10.1029/1998JE900033

    Google Scholar 

  12. 12.

    Medvedev, A.S., Kuroda, T., Hartogh, P.: Influence of dust on the dynamics of the martian atmosphere above the first scale height. Aeolian Res. 3, 145–156 (2011)

    ADS  Article  Google Scholar 

  13. 13.

    Mishchenko, M.I., Travis, L.D., Kahn, R.A., West, R.A.: Modeling phase functions for dust-like tropospheric aerosols using a shape mixture of randomly oriented polydisperse spheroids. J. Geophys. Res. (1997). doi:10.1029/97JD01124

    Google Scholar 

  14. 14.

    Montmessin, F., Rannou, P., Cabane, M.: New insights into Martian dust distribution and water-ice cloud microphysics. J. Geophys. Res. (2002). doi:10.1029/2001JE001520

    Google Scholar 

  15. 15.

    Montmessin, F., Quémerais, E., Bertaux, J.L., Korablev, O., Rannou, P., Lebonnois, S.: Stellar occultations at UV wavelengths by the SPICAM instrument: Retrieval and analysis of Martian haze profiles. J. Geophys. Res. (2006). doi:10.1029/2005JE002662

    Google Scholar 

  16. 16.

    Montmessin, F., Gondet, B., Bibring, J.-P., Langevin, Y., Drossart, P., Forget, F., Fouchet, T.: Hyperspectral imaging of convective CO2 ice clouds in the equatorial mesosphere of Mars. J. Geophys. Res. (2007). doi:10.1029/2007JE002944(2007)

    Google Scholar 

  17. 17.

    Pollack, J.B., Colburn, D.S., Flasar, F.M., Kahn, R., Carlston, C.E., Pidek, D.: Properties and effects of dust particles suspended in the Martian atmosphere. J. Geophys. Res. 84, 2929–2945 (1979)

    ADS  Article  Google Scholar 

  18. 18.

    Pollack, J.B., Cuzzi, J.N.: Scattering by nonspherical particles of size comparable to wavelength - A new semi-empirical theory and its application to tropospheric aerosols. (1980). doi:10.1175/1520-0469(1980)037<0868:SBNPOS>2.0.CO;2.

  19. 19.

    Pollack, J.B., Ockert-Bell, M.E., Shepard, M.K.: Viking Lander image analysis of Martian atmospheric dust. J. Geophys. Res. (1995). doi:10.1029/94JE02640

    Google Scholar 

  20. 20.

    Sarkissian, A., Pommereau, J.P., Goutail, F.: Identification of polar stratospheric clouds from the ground by visible spectrometry. Geophys. Res. Lett. (1991). doi:10.1029/91GL00769

    Google Scholar 

  21. 21.

    Smith, M.D.: THEMIS observations of Mars aerosol optical depth from 2002–2008. Icarus (2009). doi:10.1016/j.icarus.2009.03.027

    Google Scholar 

  22. 22.

    Smith, P.H., Lemmon, M.: Opacity of the Martian atmosphere measured by the Imager for Mars Pathfinder. J. Geophys. Res. (1999). doi:10.1029/1998JE900017

    Google Scholar 

  23. 23.

    Smith, M.D., Wolff, M.J., Lemmon, M.T., Spanovich, N., Banfield, D., Budney, C.J., Clancy, R.T., Ghosh, A., Landis, G.A., Smith, P., Whitney, B., Christensen, P.R., Squyres, S.W.: First atmospheric science results from the mars exploration rovers mini-TES. Science 306(5702), 1750–1753 (2004)

    ADS  Article  Google Scholar 

  24. 24.

    Smith, M.D., Wolff, M.J., Clancy, R.T., Kleinbohl, A., Murchie, S.L.: Vertical distribution of dust and water Ice aerosols from CRISM limb-geometry observations. J. Geophys. Res. 118(E2), 321–334 (2013)

    Article  Google Scholar 

  25. 25.

    Stamnes, K., Tsay, S.C., Wiscombe, W., Jayaweera, K.: Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. (1988). doi:10.1364/AO.27.002502

    Google Scholar 

  26. 26.

    Toledo, D.: Preparation and Validation of the Cloud and Dust Opacity Sensor ODS for ExoMars 2018 Mission. PhD thesis in Astrophysics, Univ. Reims Champagne-Ardenne (2015).

  27. 27.

    Toledo, D., Rannou, P., Pommereau, J.-P., Sarkissian, A., Foujols, T.: Measurement of aerosol optical depth and sub-visual cloud detection using the optical depth sensor (ODS). Atmos. Meas. Tech. (2016). doi:10.5194/amt-9-455-2016

    Google Scholar 

  28. 28.

    Tomasko, M.G., Doose, L.R., Lemmon, M., Smith, P.H., Wegryn, E.: Properties of dust in the Martian atmosphere from the Imager on Mars Pathfinder. J. Geophys. Res. (1999). doi:10.1029/1998JE900016

    Google Scholar 

  29. 29.

    Trân, T.-T.: Optical Depth Sensor for Measurement of Dust and Clouds in the Atmosphere of Mars: Radiative Transfer Simulations and Validation on Earth. Thèse Dr. (Astrophysique). Univ. Versailles St-Quentin en Yvelines. (2005).

  30. 30.

    Tran, T.T., Pommereau, J.-P., Rannou, P., Maria, J.-L.: Scientific aspects of the optical depth sensor. Adv. Space. Res. (2005). doi:10.1016/j.asr.2005.08.021

    Google Scholar 

  31. 31.

    Wolff, M.J., Smith, M.D., Clancy, R.T., Spanovich, N., Whitney, B.A., Lemmon, M.T., Bandfield, J.L., Banfield, D., Ghosh, A., Landis, G., Christensen, P.R., Bell, J.F., Squyres, S.W.: Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES. J. Geophys. Res. (2006). doi:10.1029/2006JE002786

    Google Scholar 

  32. 32.

    Wolff, M.J., Smith, M.D., Clancy, R.T., Arvidson, R., Kahre, M., Seelos, F., Murchie, S., Savijärvi, H.: Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer. J. Geophys. Res. (2009). doi:10.1029/2009JE003350

    Google Scholar 

Download references


This work was supported by the Centre National d'Études Spatiales (CNES) and the region of Champagne-Ardenne.

Author information



Corresponding author

Correspondence to D. Toledo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Toledo, D., Rannou, P., Pommereau, JP. et al. The optical depth sensor (ODS) for column dust opacity measurements and cloud detection on martian atmosphere. Exp Astron 42, 61–83 (2016).

Download citation


  • ODS
  • ExoMars 2018
  • Radiative transfer
  • Aerosol
  • Clouds
  • Mars