Skip to main content

The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT


The current status of the large decameter radio telescope UTR-2 (Ukrainian T-shaped Radio telescope) together with its VLBI system called URAN is described in detail. By modernization of these instruments through implementation of novel versatile analog and digital devices as well as new observation techniques, the observational capabilities of UTR-2 have been substantially enhanced. The total effective area of UTR-2 and URAN arrays reaches 200 000 m2, with 24 MHz observational bandwidth (within the 8–32 MHz frequency range), spectral and temporal resolutions down to 4 kHz and 0.5 msec in dynamic spectrum mode or virtually unlimited in waveform mode. Depending on the spectral and temporal resolutions and confusion effects, the sensitivity of UTR-2 varies from a few Jy to a few mJy, and the angular resolution ranges from ~ 30 arcminutes (with a single antenna array) to a few arcseconds (in VLBI mode). In the framework of national and international research projects conducted in recent years, many new results on Solar system objects, the Galaxy and Metagalaxy have been obtained. In order to extend the observation frequency range to 8–80 MHz and enlarge the dimensions of the UTR-2 array, a new instrument – GURT (Giant Ukrainian Radio Telescope) – is now under construction. The radio telescope systems described herein can be used in synergy with other existing low-frequency arrays such as LOFAR, LWA, NenuFAR, as well as provide ground-based support for space-based instruments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32


  1. 1.

    Abranin, E.P., Bruck, Y.M., Zakharenko, V.V., Konovalenko, A.A.: The new preamplification system for the UTR-2 radio telescope. Exp. Astron. 11, 85–112 (2001)

    ADS  Article  Google Scholar 

  2. 2.

    Blake, D.H., Crutcher, R.M., Watson, W.D.: Identification of the anomalous 26.131 MHz nitrogenline observed towards Cas A. Nature 287, 707–708 (1980)

    ADS  Article  Google Scholar 

  3. 3.

    Bobeiko, A.L., Bovkoon, V.P., Braude, S.Y., et al.: Measurements of radio emission from the compact source in the Crab nebula with the Uran-1 interferometer at 16.7, 20 and 25 MHz. Astrophys. Space Sci. 66, 211–221 (1979)

    ADS  Article  Google Scholar 

  4. 4.

    Boischot, A., Rosolen, C., Aubier, M., et al.: A new high gain, broadband, steerable, array to study Jovian decametric emission. Icarus 43, 399–415 (1980)

    ADS  Article  Google Scholar 

  5. 5.

    Boobnov, I.N., Konovalenko, A.A., Stanislavsky, A.A., et al.: Radio spectrum evolution of the supernova remnant Cassiopeia a at frequencies 35–65 MHz. Radio Phys. Radio Astron. 19(2), 111–119 (2014)

    Google Scholar 

  6. 6.

    Braude, S.Y., Megn, A.V., Sodin, L.G.: Decameter wavelength radio telescopeUTR-2. Antennas 26, 3–15 (1978)

    ADS  Google Scholar 

  7. 7.

    Braude, S.Y.: Decametric radio astronomy. Astrophysics out the Threshold of 21st Century, N. S. Kardashev, Eds. 7, 81–102. Gordon & Breach Science Publishers (1992)

  8. 8.

    Braude, S.Y., Rashkovsky, S.L., Sidorchuk, K.M., et al.: Decametric survey of discrete sources in the northern sky. XIIIa. The catalogue of sources in declination range +30° to +40°. Astrophys. Space Sci. 280, 235–299 (2002)

    ADS  Article  Google Scholar 

  9. 9.

    Briand, C., Zaslavsky, A., Maksimovic, M., et al.: Faint solar structures from decametric observations. Astron. Astrophys. 490, 339–344 (2008)

    ADS  Article  Google Scholar 

  10. 10.

    Bruck, Y.M., Ustimenko, B.Y.: Decametric pulse radioemission from PSR 0809, PSR 1133, and PSR 1919. Nature 242, 58–59 (1973)

    ADS  Google Scholar 

  11. 11.

    Bruck, Y.M., Ustimenko, B.Y.: Decametric radio emission from four pulsars. Nature 260, 766–767 (1976)

    ADS  Article  Google Scholar 

  12. 12.

    Cordes, J.M.: Interstellar scattering: radio sensing of deep space through the turbulent interstellar medium. In: Stone, R.G., Weiler, K.W., Goldstein, M.L., Bougeret, J.-L. (eds.) Radio astronomy at long wavelengths, pp. 97–104. American Geophysical Union, Washington, DC (2000)

    Google Scholar 

  13. 13.

    Erickson, W.C., Mahoney, M.J., Erb, K.: The Clark lake teepee-Tee telescope. Astrophys. J. Suppl. Ser. 50, 403–419 (1982)

    ADS  Article  Google Scholar 

  14. 14.

    Falkovich, I.S., Konovalenko, A.A., Gridin, A.A., et al.: Wide-band high linearity active dipole for low frequency radio astronomy. Exp. Astron. 32, 127–145 (2011)

    ADS  Article  Google Scholar 

  15. 15.

    Heald, G.H., Pizzo, R.F., Orrú, E., et al.: The LOFAR multifrequency snapshot sky survey (MSSS), I. Survey description and first results. Astron. Astrophys. 582, A123 (2015)

    ADS  Article  Google Scholar 

  16. 16.

    Hewish, A., Bell, S.J., Pilkington, J.D.H., et al.: Observation of a rapidly pulsating radio source. Nature 217(5130), 709–713 (1968)

    ADS  Article  Google Scholar 

  17. 17.

    Konovalenko, A.A., Sodin, L.G.: Neutral 14N in the interstellar medium. Nature 283(5745), 360–361 (1980)

    ADS  Article  Google Scholar 

  18. 18.

    Konovalenko, A.A., Sodin, L.G.: The 26.13 MHz absorption line in the direction of Cassiopeia A. Nature 294(5837), 135–136 (1981)

    ADS  Article  Google Scholar 

  19. 19.

    Konovalenko, A.A.: Ukraine decameter wave radio astronomy systems and their perspectives. Radio astronomy at long wavelengths. American geophysical union. Geophys. Monogr. Ser. 119, 311–319 (2000)

    Google Scholar 

  20. 20.

    Konovalenko, A.A., Lecacheux, A., Rosolen, C., Rucker, H.O.: New instrumentation and methods for the low frequency planetary radio astronomy.In: Planetary Radio Emission V, H. O. Rucker, M. L. Kaiser, Y. Leblanc (eds)., Austrian Academy of Sciences Publications, 63–76 (2001)

  21. 21.

    Konovalenko, A.A.: Low-frequency radio astronomy prospects. Radio Phys. Radio Astron. 10, 86–114 (2005) (in Russian)

    Google Scholar 

  22. 22.

    Konovalenko, A.A., Stepkin, S.V.: Radio Recombination lines.In: JENAM-2003, Radio Astronomy from Karl Jansky to Microjansky, L.Gurvits, S.Frey, S. Rawlings (eds.), 15, EAS, EDP Sciences, 271–295 (2005)

  23. 23.

    Konovalenko, A.A., Falkovich, I.S., Kalinichenko, N.N., et al.: Thirty-elements active antenna array as a prototype оf a huge low-frequency radio telescope. Exp. Astron. 16(3), 149–164 (2005)

    ADS  Article  Google Scholar 

  24. 24.

    Konovalenko, A.A., Rucker, H.O., Lecacheux, A. et al.: Utilizing existing decameter radio telescopes as pathfinders towards LOFAR-LWA-LOIS science and technology.In: Planetary Radio Emission VI, H. O. Rucker, W. S. Kurth, G. Mann (eds.), Austrian Academy of Sciences Publications, 507–518 (2006)

  25. 25.

    Konovalenko, A.A., Falkovich, I.S., Rucker, H.O. et al.: New antennas and methods for the low frequency stellar and planetary radio astronomy.In: Planetary Radio Emission VII. H. O. Rucker, W. S. Kurth, P. Louran et al. (eds.)., 521–532 (2010)

  26. 26.

    Konovalenko, A.A., Falkovich, I.S., Gridin, A.A., et al.: UWB Active Antenna Array for Low Frequency Radio Astronomy. Proc. of the VI-th Intern. Conf. on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS’12), Sevastopol, Ukraine, 17–21 Sept. 39–43 (2012)

  27. 27.

    Konovalenko, A.A., Kalinichenko, N.N., Rucker, H.O., et al.: Earliest recorded ground-based decameter wavelength observations of Saturn’s lightning during the giant E-storm detected by Cassini spacecraft in early 2006. Icarus 224, 14–23 (2013)

    ADS  Article  Google Scholar 

  28. 28.

    Konovalenko, A.A., Stanislavsky, A.A., Rucker, H.O., et al.: Synchronized, observations by using the STEREO and the largest ground based decameter radio telescope. Exp. Astron. 36, 137–154 (2013)

    ADS  Article  Google Scholar 

  29. 29.

    Konovalenko, O.O., Tokarsky, P.L., Yerin, S.N.: Effective Area of Phased Antenna Array of GURT Radio Telescope. Proc. of the VII-th Intern. Conf. on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS’14), Kharkiv, Ukraine, 15–19 Sept. 25–29 (2014)

  30. 30.

    Konovalenko, A., Zarka, P., Rucker, H.O., et al.: Multi-telescope synergy in the low-frequency radio astronomy for the Solar, Planetary and Heliospheric studies. U.R.S.I. Landesausschuss in der Bundesrepublik Deutschland e.V. KleinheubacherTagung 2015 Miltenberg, Germany, 28–30 September (2015)

  31. 31.

    Krymkin, V.V., Sidorchuk, M.A.: Observation of the galactic anticentre region in the direction of PKS0607 + 17 with the UTR-2 and RATAN-600 radio telescopes. Astron. Astrophys. 200, 185–190 (1988)

    ADS  Google Scholar 

  32. 32.

    Leahy, J.P.: The laing-garrington effect: implications for the torus. Vistas Astron. 40, 173–177 (1996)

    ADS  Article  Google Scholar 

  33. 33.

    Lecacheux, A., Rosolen, C., Clerc, V. et al.: Digital techniques for ground-based low frequency radio astronomy. In: Proc. SPIE,3357, pp. 533–542 (1998)

  34. 34.

    Lecacheux, A., Konovalenko, A.A., Rucker, H.O.: Using large radio telescopes at decameter wavelength. Planet. Space Sci. 52, 1357–1374 (2004)

    ADS  Article  Google Scholar 

  35. 35.

    Litvinenko, G.V., Lecacheux, A., Konovalenko, A.A., et al.: Modulation structures in the dynamic spectra of Jovian radio emission obtained with high time-frequency resolution. Astron. Astrophys. 493, 651–660 (2009)

    ADS  Article  Google Scholar 

  36. 36.

    Lozinskiy, A.B., Lozinskiy, R.A., Ivantishin, O.L., et al.: The angular structure of quasar 3C47 in the decameter waveband. Odessa Astron. Publ. 24, 103–105 (2011) (in Russian)

    ADS  Google Scholar 

  37. 37.

    Megn, A.V., Braude, S.Y., Rashkovskiy, S.L., et al.: URAN system of the decametric interferometers. Radio Phys. Radio Astron. 2(4), 385–401 (1997) (in Russian)

    Google Scholar 

  38. 38.

    Megn, A.V., Rashkovskiĭ, S.L., Shepelev, V.A., et al.: Extended component in the quasar 3C 380. Astron. Rep. 50, 692–698 (2006)

    ADS  Article  Google Scholar 

  39. 39.

    Melnik, V.N., Konovalenko, A.A., Rucker, H.O., et al.: Observations of powerful Type III bursts in the frequency range 10–30 MHz. Sol. Phys. 269(2), 335–350 (2011)

    ADS  Article  Google Scholar 

  40. 40.

    Melnik, V.N., Brazhenko, A.I., Konovalenko, A.A., et al.: Decameter type III bursts with changing frequency drift rate. Sol. Phys. (2014). doi:10.1007/s11207-014-0577-8

    Google Scholar 

  41. 41.

    Morosan, D.E., Gallagher, P.T., Zucca, P., et al.: LOFAR tied-array imaging of type III solar radio bursts. Astron. Astrophys. 568, A67 (2014)

    ADS  Article  Google Scholar 

  42. 42.

    Mylostna, K.Y., Zakharenko, V.V., Konovalenko, O.O., et al.: Fine time structure of lightnings on Saturn. Radio Phys. Radio Astron. 19(1), 10–19 (2014) (in Russian)

    Google Scholar 

  43. 43.

    Offringa, A.R., et al.: Post-correlation radio frequency interference classification methods. MNRAS 405, 155–167 (2010)

    ADS  Google Scholar 

  44. 44.

    Oonk, J.B.R., van Weeren, R., Salgado, F.: Discovery of carbon radio recombination lines in absorption towards Cygnus A. Mon. Not. R. Astron. Soc. 437(4), 3506–3515 (2014)

    ADS  Article  Google Scholar 

  45. 45.

    Peters, W.M., et al.: Radio Recombination Lines at Decameter Wavelength. Prospects for the Future. Astronomy and Astrophysics. no 14707. October 5, 8 p. (2010)

  46. 46.

    Popov, M.V., Kuz’min, A.D., Ulyanov, O.M., et al.: Instantaneous radio spectra of giant pulses from the crab pulsar from decimeter to decameter wavelengths. Astron. Rep. 50(7), 562–568 (2006)

    ADS  Article  Google Scholar 

  47. 47.

    Rickett, B.J., Coles, W.A.: Scattering in the solar wind at long wavelengths. In: Stone, R.G., Weiler, K.W., Goldstein, M.L., Bougeret, J.-L. (eds.) Radio astronomy at long wavelengths, pp. 97–104. American Geophysical Union, Washington, DC (2000)

    Chapter  Google Scholar 

  48. 48.

    Ryabov, V.B., Zarka, P., Ryabov, B.P.: Search of exoplanetary radio signals in the presence of strong interference: enhancing sensitivity by data accumulation. Planet. Space Sci. 52, 1479–1491 (2004)

    ADS  Article  Google Scholar 

  49. 49.

    Ryabov, V.B., Vavriv, D.M., Zarka, P., et al.: A low-noise, high dynamic range digital receiver for radio astronomy applications: an efficient solution for observing radio-bursts from Jupiter, the Sun, pulsars and other astrophysical plasmas below 30 MHz. Astron. Astrophys. 510, 16–28 (2010)

    ADS  Article  Google Scholar 

  50. 50.

    Ryabov, V.B., Zarka, P., Hess, S., et al.: Fast and slow frequency-drifting millisecond bursts in Jovian decameter radio emissions. Astron. Astrophys. 568, A53. 11 (2014)

    Article  Google Scholar 

  51. 51.

    Shklovsky, I.S.: Secular variation of the flux and intensity of radio emission from discrete sources. Sov. Astron. 4, 243–249 (1960)

    ADS  Google Scholar 

  52. 52.

    Sokolov, K.P.: Determination of the parameters of the spatial distribution of extragalactic radio sources observes in the decameter range. P(D) analysis at 25 MHz. Sov. Astron. 32, 121–126 (1988)

    ADS  Google Scholar 

  53. 53.

    Stanislavsky, A.A., Koval, A.A., Konovalenko, A.A.: Low-frequency heliographic of the quiet Sun corona. Astron. Nachr. 334(10), 1086–1092 (2013)

    ADS  Article  Google Scholar 

  54. 54.

    Stanislavsky, A.A., Bubnov, I.N., Konovalenko, A.A. et al.: First radio astronomy examination of the low-frequency broadband active antenna subarray. Advances in Astronomy. ID 517058. 5 p. (2014)

  55. 55.

    Stepkin, S.V., Konovalenko, A.A., Kantharia, N.G., Udaya Shankar, N.: Radio recombination lines from the largest bound atoms in space. MNRAS 374, 852–856 (2007)

    ADS  Article  Google Scholar 

  56. 56.

    Taylor, G.B., Ellingson, S.W., Kassim, N.E., et al.: First light for the first station of the long wavelength array. J. Astron. Instrum. 1, 1–29 (2012)

    Article  Google Scholar 

  57. 57.

    Tingay, S.J., Goeke, R., Bowman, J.D. et al.:The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies.Publications of the Astronomical Society of Australia. 30. id.e007. 21. (2013)

  58. 58.

    Ulyanov, O.M., Zakharenko, V.V., Konovalenko, A.A., et al.: Detection of individual pulses from pulsars B0809 + 74; B0834 + 06; B0943 + 10; B0950 + 08 and B1133 + 16 in the decameter wavelengths. Radio Phys. Radio Astron. 11(2), 10–19 (2006) (in Russian)

    Google Scholar 

  59. 59.

    Ulyanov, O.M., Shevtsova, A.I., Mukha, D.V., Seredkina, A.A.: Investigation of the earth ionosphere using the radio emission of pulsars. Balt. Astron. 22, 53–65 (2013)

    ADS  Google Scholar 

  60. 60.

    Ulyanov, O.M., Shevtsova, A.I., Skoryk, A.A.: Polarization sounding of the pulsar magnetosphere. Izv. CrAO 109, 159–168 (2013) (in Russian)

    Google Scholar 

  61. 61.

    Ulyanov, O.M., Shevtsova, A.I., Skoryk, A.A.: Algorithms of polarization parameters determination of pulsar radio emission. Radio Phys. Radio Astron. 19, 101–110 (2014) (in Russian)

    Google Scholar 

  62. 62.

    Van Haarlem, M.P., Wise, M.W., Gunst, A.V., et al.: LOFAR: the low-frequency array. Astron. Astrophys. 650, 1–56 (2013)

    Google Scholar 

  63. 63.

    Vasilyev, O.Y., Kuzin, A.I., Kravtsov, A.A., et al.: Multifunctional digital receiver-spectrometer. Radio Phys. Radio Astron. 19(3), 276–289 (2014) (in Russian)

    Google Scholar 

  64. 64.

    Vasylieva, I.: Etude de sources transitoires, exoplanètes et pulsars, à l’aide des plus grands radiotélescopes basses fréquences, Thèse de Doctorat, ED Astronomie-Astrophysique d’Ile-de-France & IRA Kharkov, 7/12/2015,

  65. 65.

    Warwick, J.W., Pearce, J.В., Evans, D.R., et al.: Planetary radio astronomy observations from Voyager 1 near Saturn. Science 212(4491), 239–243 (1981)

    ADS  Article  Google Scholar 

  66. 66.

    Zakharenko, V., Mylostna, C., Konovalenko, A., et al.: Ground-based and spacecraft observations of lightning activity on Saturn. Planet. Space Sci. 61, 53–59 (2012)

    ADS  Article  Google Scholar 

  67. 67.

    Zakharenko, V.V., Vasylieva, I.Y., Konovalenko, A.A., et al.: Detection of decameter-wavelength pulsed radio emission of 40 known pulsars. MNRAS 431, 3624–3641 (2013)

    ADS  Article  Google Scholar 

  68. 68.

    Zarka, P, Queinnec, J., Ryabov, B.P., et al.: Ground-based high sensitivity radio astronomy at decameter wavelengths, in “Planetary Radio Emissions IV”, edited by H.O. Rucker et al., Austrian Acad. Sci. Press, Vienna, (1997)

  69. 69.

    Zarka, P., Farrell, W., Fischer, G., Konovalenko, A.: Ground-based and space-based radio observations of planetary lightning. Space Sci. Rev. 137, 257–269 (2008)

    ADS  Article  Google Scholar 

  70. 70.

    Zarka, P., Bougeret, J.-L., Briand, C., et al.: Planetary and exoplanetary low frequency radio observations from the Moon. Planet. Space Sci. 74, 156–166 (2012)

    ADS  Article  Google Scholar 

  71. 71.

    Zarka, P., Girard, J., Tagger, M. et al.: LSS/NenuFAR: The LOFAR Super Station project in Nançay. In: Proceedings of the annual meetingof the French Society of Astronomy and Astrophysics, S. Boissier, P. de Laverny, N. Nardetto et al. (eds). 687–694 (2012)

  72. 72.

    Zheleznyakov, V.V.: Radiation in astrophysical plasmas. Yanus-K, Moscow (1997). in Russian

    Google Scholar 

Download references


The authors are grateful to numerous colleagues for participation in instrument development and observations. All studies have been carried out with extensive support from a number of national and international programs and foundations, especially National Academy of Sciences of Ukraine, CNRS (Centre National de la Recherche Scientifique) and Observatoire de Paris, France; Austrian Academy of Sciences (OAW), INTAS and others.

Author information



Corresponding authors

Correspondence to A. Konovalenko or S. Yerin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Konovalenko, A., Sodin, L., Zakharenko, V. et al. The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT. Exp Astron 42, 11–48 (2016).

Download citation


  • Radio astronomy
  • Radio telescope
  • Antenna arrays
  • Space research