Advertisement

Experimental Astronomy

, Volume 42, Issue 1, pp 11–48 | Cite as

The modern radio astronomy network in Ukraine: UTR-2, URAN and GURT

  • A. Konovalenko
  • L. Sodin
  • V. Zakharenko
  • P. Zarka
  • O. Ulyanov
  • M. Sidorchuk
  • S. Stepkin
  • P. Tokarsky
  • V. Melnik
  • N. Kalinichenko
  • A. Stanislavsky
  • V. Koliadin
  • V. Shepelev
  • V. Dorovskyy
  • V. Ryabov
  • A. Koval
  • I. Bubnov
  • S. Yerin
  • A. Gridin
  • V. Kulishenko
  • A. Reznichenko
  • V. Bortsov
  • V. Lisachenko
  • A. Reznik
  • G. Kvasov
  • D. Mukha
  • G. Litvinenko
  • A. Khristenko
  • V. V. Shevchenko
  • V. A. Shevchenko
  • A. Belov
  • E. Rudavin
  • I. Vasylieva
  • A. Miroshnichenko
  • N. Vasilenko
  • M. Olyak
  • K. Mylostna
  • A. Skoryk
  • A. Shevtsova
  • M. Plakhov
  • I. Kravtsov
  • Y. Volvach
  • O. Lytvinenko
  • N. Shevchuk
  • I. Zhouk
  • V. Bovkun
  • A. Antonov
  • D. Vavriv
  • V. Vinogradov
  • R. Kozhin
  • A. Kravtsov
  • E. Bulakh
  • A. Kuzin
  • A. Vasilyev
  • A. Brazhenko
  • R. Vashchishin
  • O. Pylaev
  • V. Koshovyy
  • A. Lozinsky
  • O. Ivantyshin
  • H. O. Rucker
  • M. Panchenko
  • G. Fischer
  • A. Lecacheux
  • L. Denis
  • A. Coffre
  • J.-M. Grieβmeier
  • M. Tagger
  • J. Girard
  • D. Charrier
  • C. Briand
  • G. Mann
Original Article

Abstract

The current status of the large decameter radio telescope UTR-2 (Ukrainian T-shaped Radio telescope) together with its VLBI system called URAN is described in detail. By modernization of these instruments through implementation of novel versatile analog and digital devices as well as new observation techniques, the observational capabilities of UTR-2 have been substantially enhanced. The total effective area of UTR-2 and URAN arrays reaches 200 000 m2, with 24 MHz observational bandwidth (within the 8–32 MHz frequency range), spectral and temporal resolutions down to 4 kHz and 0.5 msec in dynamic spectrum mode or virtually unlimited in waveform mode. Depending on the spectral and temporal resolutions and confusion effects, the sensitivity of UTR-2 varies from a few Jy to a few mJy, and the angular resolution ranges from ~ 30 arcminutes (with a single antenna array) to a few arcseconds (in VLBI mode). In the framework of national and international research projects conducted in recent years, many new results on Solar system objects, the Galaxy and Metagalaxy have been obtained. In order to extend the observation frequency range to 8–80 MHz and enlarge the dimensions of the UTR-2 array, a new instrument – GURT (Giant Ukrainian Radio Telescope) – is now under construction. The radio telescope systems described herein can be used in synergy with other existing low-frequency arrays such as LOFAR, LWA, NenuFAR, as well as provide ground-based support for space-based instruments.

Keywords

Radio astronomy Radio telescope Antenna arrays Space research 

Notes

Acknowledgments

The authors are grateful to numerous colleagues for participation in instrument development and observations. All studies have been carried out with extensive support from a number of national and international programs and foundations, especially National Academy of Sciences of Ukraine, CNRS (Centre National de la Recherche Scientifique) and Observatoire de Paris, France; Austrian Academy of Sciences (OAW), INTAS and others.

References

  1. 1.
    Abranin, E.P., Bruck, Y.M., Zakharenko, V.V., Konovalenko, A.A.: The new preamplification system for the UTR-2 radio telescope. Exp. Astron. 11, 85–112 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Blake, D.H., Crutcher, R.M., Watson, W.D.: Identification of the anomalous 26.131 MHz nitrogenline observed towards Cas A. Nature 287, 707–708 (1980)ADSCrossRefGoogle Scholar
  3. 3.
    Bobeiko, A.L., Bovkoon, V.P., Braude, S.Y., et al.: Measurements of radio emission from the compact source in the Crab nebula with the Uran-1 interferometer at 16.7, 20 and 25 MHz. Astrophys. Space Sci. 66, 211–221 (1979)ADSCrossRefGoogle Scholar
  4. 4.
    Boischot, A., Rosolen, C., Aubier, M., et al.: A new high gain, broadband, steerable, array to study Jovian decametric emission. Icarus 43, 399–415 (1980)ADSCrossRefGoogle Scholar
  5. 5.
    Boobnov, I.N., Konovalenko, A.A., Stanislavsky, A.A., et al.: Radio spectrum evolution of the supernova remnant Cassiopeia a at frequencies 35–65 MHz. Radio Phys. Radio Astron. 19(2), 111–119 (2014)Google Scholar
  6. 6.
    Braude, S.Y., Megn, A.V., Sodin, L.G.: Decameter wavelength radio telescopeUTR-2. Antennas 26, 3–15 (1978)ADSGoogle Scholar
  7. 7.
    Braude, S.Y.: Decametric radio astronomy. Astrophysics out the Threshold of 21st Century, N. S. Kardashev, Eds. 7, 81–102. Gordon & Breach Science Publishers (1992)Google Scholar
  8. 8.
    Braude, S.Y., Rashkovsky, S.L., Sidorchuk, K.M., et al.: Decametric survey of discrete sources in the northern sky. XIIIa. The catalogue of sources in declination range +30° to +40°. Astrophys. Space Sci. 280, 235–299 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    Briand, C., Zaslavsky, A., Maksimovic, M., et al.: Faint solar structures from decametric observations. Astron. Astrophys. 490, 339–344 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    Bruck, Y.M., Ustimenko, B.Y.: Decametric pulse radioemission from PSR 0809, PSR 1133, and PSR 1919. Nature 242, 58–59 (1973)ADSGoogle Scholar
  11. 11.
    Bruck, Y.M., Ustimenko, B.Y.: Decametric radio emission from four pulsars. Nature 260, 766–767 (1976)ADSCrossRefGoogle Scholar
  12. 12.
    Cordes, J.M.: Interstellar scattering: radio sensing of deep space through the turbulent interstellar medium. In: Stone, R.G., Weiler, K.W., Goldstein, M.L., Bougeret, J.-L. (eds.) Radio astronomy at long wavelengths, pp. 97–104. American Geophysical Union, Washington, DC (2000)Google Scholar
  13. 13.
    Erickson, W.C., Mahoney, M.J., Erb, K.: The Clark lake teepee-Tee telescope. Astrophys. J. Suppl. Ser. 50, 403–419 (1982)ADSCrossRefGoogle Scholar
  14. 14.
    Falkovich, I.S., Konovalenko, A.A., Gridin, A.A., et al.: Wide-band high linearity active dipole for low frequency radio astronomy. Exp. Astron. 32, 127–145 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    Heald, G.H., Pizzo, R.F., Orrú, E., et al.: The LOFAR multifrequency snapshot sky survey (MSSS), I. Survey description and first results. Astron. Astrophys. 582, A123 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    Hewish, A., Bell, S.J., Pilkington, J.D.H., et al.: Observation of a rapidly pulsating radio source. Nature 217(5130), 709–713 (1968)ADSCrossRefGoogle Scholar
  17. 17.
    Konovalenko, A.A., Sodin, L.G.: Neutral 14N in the interstellar medium. Nature 283(5745), 360–361 (1980)ADSCrossRefGoogle Scholar
  18. 18.
    Konovalenko, A.A., Sodin, L.G.: The 26.13 MHz absorption line in the direction of Cassiopeia A. Nature 294(5837), 135–136 (1981)ADSCrossRefGoogle Scholar
  19. 19.
    Konovalenko, A.A.: Ukraine decameter wave radio astronomy systems and their perspectives. Radio astronomy at long wavelengths. American geophysical union. Geophys. Monogr. Ser. 119, 311–319 (2000)Google Scholar
  20. 20.
    Konovalenko, A.A., Lecacheux, A., Rosolen, C., Rucker, H.O.: New instrumentation and methods for the low frequency planetary radio astronomy.In: Planetary Radio Emission V, H. O. Rucker, M. L. Kaiser, Y. Leblanc (eds)., Austrian Academy of Sciences Publications, 63–76 (2001)Google Scholar
  21. 21.
    Konovalenko, A.A.: Low-frequency radio astronomy prospects. Radio Phys. Radio Astron. 10, 86–114 (2005) (in Russian)Google Scholar
  22. 22.
    Konovalenko, A.A., Stepkin, S.V.: Radio Recombination lines.In: JENAM-2003, Radio Astronomy from Karl Jansky to Microjansky, L.Gurvits, S.Frey, S. Rawlings (eds.), 15, EAS, EDP Sciences, 271–295 (2005)Google Scholar
  23. 23.
    Konovalenko, A.A., Falkovich, I.S., Kalinichenko, N.N., et al.: Thirty-elements active antenna array as a prototype оf a huge low-frequency radio telescope. Exp. Astron. 16(3), 149–164 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    Konovalenko, A.A., Rucker, H.O., Lecacheux, A. et al.: Utilizing existing decameter radio telescopes as pathfinders towards LOFAR-LWA-LOIS science and technology.In: Planetary Radio Emission VI, H. O. Rucker, W. S. Kurth, G. Mann (eds.), Austrian Academy of Sciences Publications, 507–518 (2006)Google Scholar
  25. 25.
    Konovalenko, A.A., Falkovich, I.S., Rucker, H.O. et al.: New antennas and methods for the low frequency stellar and planetary radio astronomy.In: Planetary Radio Emission VII. H. O. Rucker, W. S. Kurth, P. Louran et al. (eds.)., 521–532 (2010)Google Scholar
  26. 26.
    Konovalenko, A.A., Falkovich, I.S., Gridin, A.A., et al.: UWB Active Antenna Array for Low Frequency Radio Astronomy. Proc. of the VI-th Intern. Conf. on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS’12), Sevastopol, Ukraine, 17–21 Sept. 39–43 (2012)Google Scholar
  27. 27.
    Konovalenko, A.A., Kalinichenko, N.N., Rucker, H.O., et al.: Earliest recorded ground-based decameter wavelength observations of Saturn’s lightning during the giant E-storm detected by Cassini spacecraft in early 2006. Icarus 224, 14–23 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Konovalenko, A.A., Stanislavsky, A.A., Rucker, H.O., et al.: Synchronized, observations by using the STEREO and the largest ground based decameter radio telescope. Exp. Astron. 36, 137–154 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    Konovalenko, O.O., Tokarsky, P.L., Yerin, S.N.: Effective Area of Phased Antenna Array of GURT Radio Telescope. Proc. of the VII-th Intern. Conf. on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS’14), Kharkiv, Ukraine, 15–19 Sept. 25–29 (2014)Google Scholar
  30. 30.
    Konovalenko, A., Zarka, P., Rucker, H.O., et al.: Multi-telescope synergy in the low-frequency radio astronomy for the Solar, Planetary and Heliospheric studies. U.R.S.I. Landesausschuss in der Bundesrepublik Deutschland e.V. KleinheubacherTagung 2015 Miltenberg, Germany, 28–30 September (2015)Google Scholar
  31. 31.
    Krymkin, V.V., Sidorchuk, M.A.: Observation of the galactic anticentre region in the direction of PKS0607 + 17 with the UTR-2 and RATAN-600 radio telescopes. Astron. Astrophys. 200, 185–190 (1988)ADSGoogle Scholar
  32. 32.
    Leahy, J.P.: The laing-garrington effect: implications for the torus. Vistas Astron. 40, 173–177 (1996)ADSCrossRefGoogle Scholar
  33. 33.
    Lecacheux, A., Rosolen, C., Clerc, V. et al.: Digital techniques for ground-based low frequency radio astronomy. In: Proc. SPIE,3357, pp. 533–542 (1998)Google Scholar
  34. 34.
    Lecacheux, A., Konovalenko, A.A., Rucker, H.O.: Using large radio telescopes at decameter wavelength. Planet. Space Sci. 52, 1357–1374 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    Litvinenko, G.V., Lecacheux, A., Konovalenko, A.A., et al.: Modulation structures in the dynamic spectra of Jovian radio emission obtained with high time-frequency resolution. Astron. Astrophys. 493, 651–660 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    Lozinskiy, A.B., Lozinskiy, R.A., Ivantishin, O.L., et al.: The angular structure of quasar 3C47 in the decameter waveband. Odessa Astron. Publ. 24, 103–105 (2011) (in Russian)ADSGoogle Scholar
  37. 37.
    Megn, A.V., Braude, S.Y., Rashkovskiy, S.L., et al.: URAN system of the decametric interferometers. Radio Phys. Radio Astron. 2(4), 385–401 (1997) (in Russian)Google Scholar
  38. 38.
    Megn, A.V., Rashkovskiĭ, S.L., Shepelev, V.A., et al.: Extended component in the quasar 3C 380. Astron. Rep. 50, 692–698 (2006)ADSCrossRefGoogle Scholar
  39. 39.
    Melnik, V.N., Konovalenko, A.A., Rucker, H.O., et al.: Observations of powerful Type III bursts in the frequency range 10–30 MHz. Sol. Phys. 269(2), 335–350 (2011)ADSCrossRefGoogle Scholar
  40. 40.
    Melnik, V.N., Brazhenko, A.I., Konovalenko, A.A., et al.: Decameter type III bursts with changing frequency drift rate. Sol. Phys. (2014). doi: 10.1007/s11207-014-0577-8 Google Scholar
  41. 41.
    Morosan, D.E., Gallagher, P.T., Zucca, P., et al.: LOFAR tied-array imaging of type III solar radio bursts. Astron. Astrophys. 568, A67 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    Mylostna, K.Y., Zakharenko, V.V., Konovalenko, O.O., et al.: Fine time structure of lightnings on Saturn. Radio Phys. Radio Astron. 19(1), 10–19 (2014) (in Russian)Google Scholar
  43. 43.
    Offringa, A.R., et al.: Post-correlation radio frequency interference classification methods. MNRAS 405, 155–167 (2010)ADSGoogle Scholar
  44. 44.
    Oonk, J.B.R., van Weeren, R., Salgado, F.: Discovery of carbon radio recombination lines in absorption towards Cygnus A. Mon. Not. R. Astron. Soc. 437(4), 3506–3515 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    Peters, W.M., et al.: Radio Recombination Lines at Decameter Wavelength. Prospects for the Future. Astronomy and Astrophysics. no 14707. October 5, 8 p. (2010)Google Scholar
  46. 46.
    Popov, M.V., Kuz’min, A.D., Ulyanov, O.M., et al.: Instantaneous radio spectra of giant pulses from the crab pulsar from decimeter to decameter wavelengths. Astron. Rep. 50(7), 562–568 (2006)ADSCrossRefGoogle Scholar
  47. 47.
    Rickett, B.J., Coles, W.A.: Scattering in the solar wind at long wavelengths. In: Stone, R.G., Weiler, K.W., Goldstein, M.L., Bougeret, J.-L. (eds.) Radio astronomy at long wavelengths, pp. 97–104. American Geophysical Union, Washington, DC (2000)CrossRefGoogle Scholar
  48. 48.
    Ryabov, V.B., Zarka, P., Ryabov, B.P.: Search of exoplanetary radio signals in the presence of strong interference: enhancing sensitivity by data accumulation. Planet. Space Sci. 52, 1479–1491 (2004)ADSCrossRefGoogle Scholar
  49. 49.
    Ryabov, V.B., Vavriv, D.M., Zarka, P., et al.: A low-noise, high dynamic range digital receiver for radio astronomy applications: an efficient solution for observing radio-bursts from Jupiter, the Sun, pulsars and other astrophysical plasmas below 30 MHz. Astron. Astrophys. 510, 16–28 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    Ryabov, V.B., Zarka, P., Hess, S., et al.: Fast and slow frequency-drifting millisecond bursts in Jovian decameter radio emissions. Astron. Astrophys. 568, A53. 11 (2014)CrossRefGoogle Scholar
  51. 51.
    Shklovsky, I.S.: Secular variation of the flux and intensity of radio emission from discrete sources. Sov. Astron. 4, 243–249 (1960)ADSGoogle Scholar
  52. 52.
    Sokolov, K.P.: Determination of the parameters of the spatial distribution of extragalactic radio sources observes in the decameter range. P(D) analysis at 25 MHz. Sov. Astron. 32, 121–126 (1988)ADSGoogle Scholar
  53. 53.
    Stanislavsky, A.A., Koval, A.A., Konovalenko, A.A.: Low-frequency heliographic of the quiet Sun corona. Astron. Nachr. 334(10), 1086–1092 (2013)ADSCrossRefGoogle Scholar
  54. 54.
    Stanislavsky, A.A., Bubnov, I.N., Konovalenko, A.A. et al.: First radio astronomy examination of the low-frequency broadband active antenna subarray. Advances in Astronomy. ID 517058. 5 p. (2014)Google Scholar
  55. 55.
    Stepkin, S.V., Konovalenko, A.A., Kantharia, N.G., Udaya Shankar, N.: Radio recombination lines from the largest bound atoms in space. MNRAS 374, 852–856 (2007)ADSCrossRefGoogle Scholar
  56. 56.
    Taylor, G.B., Ellingson, S.W., Kassim, N.E., et al.: First light for the first station of the long wavelength array. J. Astron. Instrum. 1, 1–29 (2012)CrossRefGoogle Scholar
  57. 57.
    Tingay, S.J., Goeke, R., Bowman, J.D. et al.:The Murchison Widefield Array: The Square Kilometre Array Precursor at Low Radio Frequencies.Publications of the Astronomical Society of Australia. 30. id.e007. 21. (2013)Google Scholar
  58. 58.
    Ulyanov, O.M., Zakharenko, V.V., Konovalenko, A.A., et al.: Detection of individual pulses from pulsars B0809 + 74; B0834 + 06; B0943 + 10; B0950 + 08 and B1133 + 16 in the decameter wavelengths. Radio Phys. Radio Astron. 11(2), 10–19 (2006) (in Russian)Google Scholar
  59. 59.
    Ulyanov, O.M., Shevtsova, A.I., Mukha, D.V., Seredkina, A.A.: Investigation of the earth ionosphere using the radio emission of pulsars. Balt. Astron. 22, 53–65 (2013)ADSGoogle Scholar
  60. 60.
    Ulyanov, O.M., Shevtsova, A.I., Skoryk, A.A.: Polarization sounding of the pulsar magnetosphere. Izv. CrAO 109, 159–168 (2013) (in Russian)Google Scholar
  61. 61.
    Ulyanov, O.M., Shevtsova, A.I., Skoryk, A.A.: Algorithms of polarization parameters determination of pulsar radio emission. Radio Phys. Radio Astron. 19, 101–110 (2014) (in Russian)Google Scholar
  62. 62.
    Van Haarlem, M.P., Wise, M.W., Gunst, A.V., et al.: LOFAR: the low-frequency array. Astron. Astrophys. 650, 1–56 (2013)Google Scholar
  63. 63.
    Vasilyev, O.Y., Kuzin, A.I., Kravtsov, A.A., et al.: Multifunctional digital receiver-spectrometer. Radio Phys. Radio Astron. 19(3), 276–289 (2014) (in Russian)Google Scholar
  64. 64.
    Vasylieva, I.: Etude de sources transitoires, exoplanètes et pulsars, à l’aide des plus grands radiotélescopes basses fréquences, Thèse de Doctorat, ED Astronomie-Astrophysique d’Ile-de-France & IRA Kharkov, 7/12/2015, https://tel.archives-ouvertes.fr/tel-01246634
  65. 65.
    Warwick, J.W., Pearce, J.В., Evans, D.R., et al.: Planetary radio astronomy observations from Voyager 1 near Saturn. Science 212(4491), 239–243 (1981)ADSCrossRefGoogle Scholar
  66. 66.
    Zakharenko, V., Mylostna, C., Konovalenko, A., et al.: Ground-based and spacecraft observations of lightning activity on Saturn. Planet. Space Sci. 61, 53–59 (2012)ADSCrossRefGoogle Scholar
  67. 67.
    Zakharenko, V.V., Vasylieva, I.Y., Konovalenko, A.A., et al.: Detection of decameter-wavelength pulsed radio emission of 40 known pulsars. MNRAS 431, 3624–3641 (2013)ADSCrossRefGoogle Scholar
  68. 68.
    Zarka, P, Queinnec, J., Ryabov, B.P., et al.: Ground-based high sensitivity radio astronomy at decameter wavelengths, in “Planetary Radio Emissions IV”, edited by H.O. Rucker et al., Austrian Acad. Sci. Press, Vienna, (1997)Google Scholar
  69. 69.
    Zarka, P., Farrell, W., Fischer, G., Konovalenko, A.: Ground-based and space-based radio observations of planetary lightning. Space Sci. Rev. 137, 257–269 (2008)ADSCrossRefGoogle Scholar
  70. 70.
    Zarka, P., Bougeret, J.-L., Briand, C., et al.: Planetary and exoplanetary low frequency radio observations from the Moon. Planet. Space Sci. 74, 156–166 (2012)ADSCrossRefGoogle Scholar
  71. 71.
    Zarka, P., Girard, J., Tagger, M. et al.: LSS/NenuFAR: The LOFAR Super Station project in Nançay. In: Proceedings of the annual meetingof the French Society of Astronomy and Astrophysics, S. Boissier, P. de Laverny, N. Nardetto et al. (eds). 687–694 (2012)Google Scholar
  72. 72.
    Zheleznyakov, V.V.: Radiation in astrophysical plasmas. Yanus-K, Moscow (1997). in RussianGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • A. Konovalenko
    • 1
  • L. Sodin
    • 1
  • V. Zakharenko
    • 1
  • P. Zarka
    • 2
  • O. Ulyanov
    • 1
  • M. Sidorchuk
    • 1
  • S. Stepkin
    • 1
  • P. Tokarsky
    • 1
  • V. Melnik
    • 1
  • N. Kalinichenko
    • 1
  • A. Stanislavsky
    • 1
  • V. Koliadin
    • 1
  • V. Shepelev
    • 1
  • V. Dorovskyy
    • 1
  • V. Ryabov
    • 3
  • A. Koval
    • 1
  • I. Bubnov
    • 1
  • S. Yerin
    • 1
  • A. Gridin
    • 1
  • V. Kulishenko
    • 1
  • A. Reznichenko
    • 1
  • V. Bortsov
    • 1
  • V. Lisachenko
    • 1
  • A. Reznik
    • 1
  • G. Kvasov
    • 1
  • D. Mukha
    • 1
  • G. Litvinenko
    • 1
  • A. Khristenko
    • 1
  • V. V. Shevchenko
    • 1
  • V. A. Shevchenko
    • 1
  • A. Belov
    • 1
  • E. Rudavin
    • 1
  • I. Vasylieva
    • 1
  • A. Miroshnichenko
    • 1
  • N. Vasilenko
    • 1
  • M. Olyak
    • 1
  • K. Mylostna
    • 1
  • A. Skoryk
    • 1
  • A. Shevtsova
    • 1
  • M. Plakhov
    • 1
  • I. Kravtsov
    • 1
  • Y. Volvach
    • 1
  • O. Lytvinenko
    • 1
  • N. Shevchuk
    • 1
  • I. Zhouk
    • 1
  • V. Bovkun
    • 1
  • A. Antonov
    • 1
  • D. Vavriv
    • 1
  • V. Vinogradov
    • 1
  • R. Kozhin
    • 1
  • A. Kravtsov
    • 1
  • E. Bulakh
    • 1
  • A. Kuzin
    • 1
  • A. Vasilyev
    • 1
  • A. Brazhenko
    • 4
  • R. Vashchishin
    • 4
  • O. Pylaev
    • 4
  • V. Koshovyy
    • 5
  • A. Lozinsky
    • 5
  • O. Ivantyshin
    • 5
  • H. O. Rucker
    • 6
  • M. Panchenko
    • 7
  • G. Fischer
    • 7
  • A. Lecacheux
    • 2
  • L. Denis
    • 8
  • A. Coffre
    • 8
  • J.-M. Grieβmeier
    • 9
  • M. Tagger
    • 10
  • J. Girard
    • 10
  • D. Charrier
    • 11
  • C. Briand
    • 2
  • G. Mann
    • 12
  1. 1.Institute of Radio AstronomyNational Academy of Sciences of UkraineKharkivUkraine
  2. 2.LESIA & USN, Observatoire de ParisCNRS, PSL/SU/UPMC/UPD/SPC/UO/OSUCMeudonFrance
  3. 3.Future UniversityHakodateHakodateJapan
  4. 4.Poltava gravimetrical observatory of Institute of geophysicsNational Academy of Sciences of UkrainePoltavaUkraine
  5. 5.KarpenkoPhysiko-Mechanical InstituteNational Academy of Sciences of UkraineLvivUkraine
  6. 6.Commission for Astronomy of Austrian Academy of SciencesWienAustria
  7. 7.Space Research InstituteAustrian Academy of SciencesGrazAustria
  8. 8.USNNançayFrance
  9. 9.LPC2EOrléansFrance
  10. 10.CEA/AIMSaclayFrance
  11. 11.SubatechNantesFrance
  12. 12.Leibniz-Institut für Astrophysik PotsdamPotsdamGermany

Personalised recommendations