Skip to main content
Log in

Forecasting seeing and parameters of long-exposure images by means of ARIMA

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

Atmospheric turbulence is the one of the major limiting factors for ground-based astronomical observations. In this paper, the problem of short-term forecasting seeing is discussed. The real data that were obtained by atmospheric optical turbulence (OT) measurements above Mount Shatdzhatmaz in 2007–2013 have been analysed. Linear auto-regressive integrated moving average (ARIMA) models are used for the forecasting. A new procedure for forecasting the image characteristics of direct astronomical observations (central image intensity, full width at half maximum, radius encircling 80 % of the energy) has been proposed. Probability density functions of the forecast of these quantities are 1.5–2 times thinner than the respective unconditional probability density functions. Overall, this study found that the described technique could adequately describe temporal stochastic variations of the OT power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. As a result of the linearity, E[x i ]=0 in this section without loss of generality.

  2. Inherently, the likelihood value corrected by the number of parameters.

  3. That is one of the criteria for model identification adequateness.

References

  1. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19, 716–723 (1974)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Aussem, A., Murtagh, F., Sarazin, M.: Dynamical recurrent neural networks and pattern recognition methods for time series prediction: Application to seeing and temperature forecasting in the context of ESO’s VLT astronomical weather station. Vistas Astron 38, 357–374 (1994). doi:10.1016/0083-6656(94)90047-7

    Article  ADS  Google Scholar 

  3. Box, G.E.P., Cox, D.R.: An analysis of transformations. J. Royal Stat. Soc. Ser. B (Methodol.) 26, 211–252 (1964)

    MathSciNet  MATH  Google Scholar 

  4. Box, G.E.P., Jenkins, G.: Time Series Analysis: Forecasting and Control. Holden-Day (1976)

  5. Cleveland, R.B., Cleveland, W.S., McRae, J.E., Terpenning, I.: Stl: A seasonal-trend decomposition procedure based on loess. J. Off. Stat 6(1), 3–73 (1990)

    Google Scholar 

  6. Fenton, L.: The sum of log-normal probability distributions in scatter transmission systems. IRE Trans. Commun. Systems 8(1), 57–67 (1960). doi:10.1109/TCOM.1960.1097606

    Article  MathSciNet  Google Scholar 

  7. Freeman, J., Modarres, R.: Inverse box–cox: The power-normal distribution. Stat. Probab. Lett. 76(8), 764–772 (2006). doi:10.1016/j.spl.2005.10.036

    Article  MathSciNet  MATH  Google Scholar 

  8. Fried, D.L.: Optical resolution through a randomly inhomogeneous medium for very long and very short exposures. J. Opt. Soc. Am 56, 1372–1379 (1966)

    Article  ADS  Google Scholar 

  9. Giordano, C., Vernin, J., Vázquez Ramió, H., Muñoz-Tuñón, C., Varela, A.M., Trinquet, H.: Atmospheric and seeing forecast: WRF model validation with in situ measurements at ORM. Mon. Not. R. Astron. Soc. 430, 3102–3111 (2013). doi:10.1093/mnras/stt117

    Article  ADS  Google Scholar 

  10. Kornilov, V., Kornilov, M.: The revision of the turbulence profiles restoration from MASS scintillation indices. Exp. Astron 29, 155–176 (2011). doi:10.1007/s10686-010-9210-5

    Article  ADS  Google Scholar 

  11. Kornilov, V., Safonov, B., Kornilov, M., Shatsky, N., Voziakova, O., Potanin, S., Gorbunov, I., Senik, V., Cheryasov, D.: Study on atmospheric optical turbulence above Mount Shatdzhatmaz in 2007–2013. Publ. Astron. Soc. Pac 126, 482–495 (2014). doi:10.1086/676648

    Article  ADS  Google Scholar 

  12. Kornilov, V., Sarazin, M., Tokovinin, A., Travouillon, T., Voziakova, O.: Comparison of the scintillation noise above different observatories measured with MASS instruments. Astron. Astrophys 546, A41 (2012). doi:10.1051/0004-6361/201219954

    Article  ADS  Google Scholar 

  13. Kornilov, V., Shatsky, N., Voziakova, O., Safonov, B., Potanin, S., Kornilov, M.: First results of a site-testing programme at Mount Shatdzhatmaz during 2007–2009. Mon. Notices Royal Astron. Soc 408(2), 1233–1248 (2010). doi:10.1111/j.1365-2966.2010.17203.x

    Google Scholar 

  14. Masciadri, E., Lascaux, F., Fini, L.: MOSE: operational forecast of the optical turbulence and atmospheric parameters at European Southern Observatory ground-based sites — I. Overview and vertical stratification of atmospheric parameters at 0–20 km. Mon. Notices Royal Astron. Soc 436, 1968–1985 (2013). doi:10.1093/mnras/stt1708

    Google Scholar 

  15. Core Team, R.: R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria (2013). http://www.R-project.org

    Google Scholar 

  16. Racine, R.: Temporal fluctuations of atmospheric seeing. Publ. Astron. Soc.Pac. 108, 372–374 (1996). doi:10.1086/133732

    Article  ADS  Google Scholar 

  17. Roddier, F.: The effects of atmospheric turbulence in optical astronomy. chap. V, pp. 281–376. Elsevier (1981). doi:10.1016/S0079-6638(08)70204-X

  18. Safonov, B.: Twilight observations with MASS-DIMM. ArXiv e-prints (2011)

  19. Sarazin, M., Roddier, F.: The ESO differential image motion monitor. Astron. Astrophys 227, 294–300 (1990)

    ADS  Google Scholar 

  20. Schulz, M., Stattegger, K.: Spectrum: spectral analysis of unevenly spaced paleoclimatic time series. Comput. Geosci. 23(9), 929–945 (1997). doi:10.1016/S0098-3004(97)00087-3

    Article  ADS  Google Scholar 

  21. Skidmore, W., Els, S., Travouillon, T., Riddle, R., Schck, M., Bustos, E., Seguel, J., Walker, D.: Thirty meter telescope site testing V: Seeing and isoplanatic angle. Publ. Astron. Soc. Pac 121(884), 1151–1166 (2009)

    Article  ADS  Google Scholar 

  22. Tatarskii, V.I.: The effects of the turbulent atmosphere on wave propagation (1971)

  23. Tokovinin, A., Kornilov, V.: Accurate seeing measurements with MASS and DIMM. Mon. Not. R. Astron. Soc. 381(3), 1179–1189 (2007). doi:10.1111/j.1365-2966.2007.12307.x

    Article  ADS  Google Scholar 

  24. Trinquet, H., Vernin, J.: A model to forecast seeing and estimate C\(^{2}_{N}\) profiles from meteorological data. Publ. Astron. Soc. Pac 118, 756–764 (2006). doi:10.1086/503165

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author is grateful to all the people of the MASS group at Sternberg Astronomical Institute. Moreover, the author would like to give special thanks to B. Safonov and V. Kornilov for the valuable discussions on early drafts of this paper. Lastly, the author highly appreciates the efforts of the anonymous reviewer to make the present paper more understandable to readers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matwey V. Kornilov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kornilov, M.V. Forecasting seeing and parameters of long-exposure images by means of ARIMA. Exp Astron 41, 223–242 (2016). https://doi.org/10.1007/s10686-015-9485-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-015-9485-7

Keywords

Navigation