Skip to main content
Log in

THERMAP: a mid-infrared spectro-imager for space missions to small bodies in the inner solar system

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

We present THERMAP, a mid-infrared spectro-imager for space missions to small bodies in the inner solar system, developed in the framework of the MarcoPolo-R asteroid sample return mission. THERMAP is very well suited to characterize the surface thermal environment of a NEO and to map its surface composition. The instrument has two channels, one for imaging and one for spectroscopy: it is both a thermal camera with full 2D imaging capabilities and a slit spectrometer. THERMAP takes advantage of the recent technological developments of uncooled microbolometer arrays, sensitive in the mid-infrared spectral range. THERMAP can acquire thermal images (8–18 μm) of the surface and perform absolute temperature measurements with a precision better than 3.5 K above 200 K. THERMAP can acquire mid-infrared spectra (8–16 μm) of the surface with a spectral resolution Δλ of 0.3 μm. For surface temperatures above 350 K, spectra have a signal-to-noise ratio >60 in the spectral range 9–13 μm where most emission features occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Barucci, M.A., et al.: MarcoPolo-R near earth asteroid sample return mission. Exp. Astron. 33, 645 (2012)

    Article  ADS  Google Scholar 

  2. Brageot, E., et al.: Experimental study of an uncooled microbolometer array for thermal mapping and spectroscopy of asteroids. Exp. Astron. 38, 381 (2014)

    Article  ADS  Google Scholar 

  3. Brunetto, R., et al.: Modeling asteroid surfaces from observations and irradiation experiments: the case of 832 Karin. Icarus 184, 327 (2006)

    Article  ADS  Google Scholar 

  4. Brunetto, R., et al.: Space weathering of silicates simulated by nanosecond pulse UV excimer laser. Icarus 180, 546 (2006)

    Article  ADS  Google Scholar 

  5. Brunetto, R., et al.: Reflectance and transmittance spectra (2.2 2.4 μm) of ion irradiated frozen methanol. Icarus 175, 226 (2005)

    Article  ADS  Google Scholar 

  6. Chapman, C.R.: Space weathering of asteroid surfaces. Annu. Rev. Earth Planet. Sci. 32, 539 (2004)

    Article  ADS  Google Scholar 

  7. Davidsson, B.J.R., et al.: Thermal inertia and surface roughness of Comet 9P/Tempel 1. Icarus 224, 154 (2013)

    Article  ADS  Google Scholar 

  8. Davidsson, B.J.R., et al.: Interpretation of thermal emission. I. The effect of roughness for spatially resolved atmosphereless bodies. Icarus 252, 1–21 (2015)

    Article  ADS  Google Scholar 

  9. Delbo, M., et al.: Thermal fatigue as the origin of regolith on small asteroids. Nature 508, 233 (2014)

    Article  ADS  Google Scholar 

  10. Dohlen, K., et al.: Optical designs for the Rosetta narrow-angle camera. Opt. Eng. 35, 1150 (1996)

    Article  ADS  Google Scholar 

  11. Fulvio, D., et al.: Space weathering of Vesta and V-type asteroids: new irradiation experiments on HED meteorites. Astron. Astrophys. 537, L11 (2012)

    Article  ADS  Google Scholar 

  12. Groussin, O., et al.: The temperature, thermal inertia, roughness and color of the nuclei of Comets 103P/Hartley 2 and 9P/Tempel 1. Icarus 222, 580 (2013)

    Article  ADS  Google Scholar 

  13. Groussin, O., et al.: Surface temperature of the nucleus of Comet 9P/Tempel 1. Icarus 187, 16 (2007)

    Article  ADS  Google Scholar 

  14. Gundlach, B., Blum, J.: A new method to determine the grain size of planetary regolith. Icarus 223, 479–492 (2013)

    Article  ADS  Google Scholar 

  15. Harris, A.W., Lagerros, J.S.V.: Asteroids in the thermal infrared. Asteroids III, pp. 205–218. University of Arizona Press, Tucson (2002)

    Google Scholar 

  16. Hiesinger, H., Helbert, J., Mertis Co-I Team: The mercury radiometer and thermal infrared spectrometer (MERTIS) for the BepiColombo mission. Planet. Space Sci. 58, 144 (2010)

    Article  ADS  Google Scholar 

  17. Hiroi, T., et al.: Developing space weathering on the asteroid 25143 Itokawa. Nature 443, 56 (2006)

    Article  ADS  Google Scholar 

  18. Mainzer, A., et al.: Preliminary results from NEOWISE: an enhancement to the wide-field infrared survey explorer for solar system science. Astrophys. J. 731, 53 (2011)

    Article  ADS  Google Scholar 

  19. Marchi, S., et al.: Space weathering of near-earth and main belt silicate-rich asteroids: observations and ion irradiation experiments. Astron. Astrophys. 443, 769 (2005)

    Article  ADS  Google Scholar 

  20. Martin-Hernando, Y., et al.: Microbolometer characterization with the electronics prototype of the IRCAM for the JEM-EUSO mission. SPIE proceedings 9143, space telescopes and instrumentation. Op Infrared, and Millimeter Wave. 28, 13 (2014)

    Google Scholar 

  21. Maturilli, A., et al.: The Berlin emissivity database (BED). Planet. Space Sci. 56, 420 (2008)

    Article  ADS  Google Scholar 

  22. Morbidelli, A., Vokrouhlicky, D.: The Yarkovsky-driven origin of near-earth asteroids. Icarus 163, 120 (2003)

    Article  ADS  Google Scholar 

  23. Müller, T.G.: Thermophysical analysis of infrared observations of asteroids. Meteorit. Planet. Sci. 37, 1919 (2002)

    Article  ADS  Google Scholar 

  24. Nakamura, T., et al.: Itokawa dust particles: a direct link between S-type asteroids and ordinary chondrites. Science 333, 1113 (2011)

    Article  ADS  Google Scholar 

  25. Noguchi, T., et al.: Incipient space weathering observed on the surface of Itokawa dust particles. Science 333, 1121 (2011)

    Article  ADS  Google Scholar 

  26. Pieters, C.M., et al.: Space weathering on airless bodies: resolving a mystery with lunar samples. Meteorit. Planet. Sci. 35, 1101 (2000)

    Article  ADS  Google Scholar 

  27. Price, S.D., et al.: Thermal profiles of the eclipsed moon. Adv. Space Res. 31, 2299–2304 (2003)

    Article  ADS  Google Scholar 

  28. Rozitis, B., Green, S.F.: Directional characteristics of thermal infrared beaming from atmosphereless planetary surfaces – A new thermophysical model. Mon. Not. R. Astron. Soc. 415, 2042 (2011)

    Article  ADS  Google Scholar 

  29. Rozitis, B., Green, S.F.: The influence of rough surface thermal-infrared beaming on the Yarkovsky and YORP effects. Mon. Not. R. Astron. Soc. 423, 367 (2012)

    Article  ADS  Google Scholar 

  30. Rozitis, B., Green, S.F.: The influence of global self-heating on the Yarkovsky and YORP effects. Mon. Not. R. Astron. Soc. 433, 603 (2013)

    Article  ADS  Google Scholar 

  31. Rubincam, D.P.: Radiative spin-up and spin-down of small asteroids. Icarus 148, 2 (2000)

    Article  ADS  Google Scholar 

  32. Saito, J., et al.: Detailed images of asteroid 25143 Itokawa from Hayabusa. Science 312, 1341 (2006)

    Article  ADS  Google Scholar 

  33. Strazzulla, G., et al.: Spectral alteration of the meteorite Epinal (H5) induced by heavy ion irradiation: a simulation of space weathering effects on near-earth asteroids. Icarus 174, 31 (2005)

    Article  ADS  Google Scholar 

  34. Trilling, D.E., et al.: ExploreNEOs. I. I. Description and first results from the warm Spitzer near-earth object survey. Astron. J. 140, 770–784 (2010)

    Article  ADS  Google Scholar 

  35. Vernazza, P., et al.: High surface porosity as the origin of emissivity features in asteroid spectra. Icarus 221, 1162 (2012)

    Article  ADS  Google Scholar 

  36. Vernazza, P., et al.: Asteroid (21) Lutetia as a remnant of Earth’s precursor planetesimals. Icarus 216, 650 (2011)

    Article  ADS  Google Scholar 

  37. Vernazza, P., et al.: Plausible parent bodies for enstatite chondrites and mesosiderites: implications for Lutetia’s fly-by. Icarus 202, 477 (2009)

    Article  ADS  Google Scholar 

  38. Vernazza, P., et al.: Solar wind as the origin of rapid reddening of asteroid surfaces. Nature 458, 993 (2009)

    Article  ADS  Google Scholar 

  39. Vernazza, P., et al.: Asteroid colors: a novel tool for magnetic field detection? the case of Vesta. Astron. Astrophys. 451, L43 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The contribution from France to the THERMAP instrument was funded by the Centre National d’Etudes Spatiales (CNES). The contribution from Spain to the THERMAP instrument was funded by the Spanish “Ministerio de Economia y Competitividad” projects AYA2011-29489-C03-02 and AYA2012-39115-C03- 03. M. Delbo acknowledges support from the French “Agence Nationale de la Recherche” (ANR-SHOCKS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Groussin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Groussin, O., Licandro, J., Helbert, J. et al. THERMAP: a mid-infrared spectro-imager for space missions to small bodies in the inner solar system. Exp Astron 41, 95–115 (2016). https://doi.org/10.1007/s10686-015-9475-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-015-9475-9

Keywords

Navigation