Skip to main content
Log in

The design and flight performance of the PoGOLite Pathfinder balloon-borne hard X-ray polarimeter

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

In the 50 years since the advent of X-ray astronomy there have been many scientific advances due to the development of new experimental techniques for detecting and characterising X-rays. Observations of X-ray polarisation have, however, not undergone a similar development. This is a shortcoming since a plethora of open questions related to the nature of X-ray sources could be resolved through measurements of the linear polarisation of emitted X-rays. The PoGOLite Pathfinder is a balloon-borne hard X-ray polarimeter operating in the 25-240 keV energy band from a stabilised observation platform. Polarisation is determined using coincident energy deposits in a segmented array of plastic scintillators surrounded by a BGO anticoincidence system and a polyethylene neutron shield. The PoGOLite Pathfinder was launched from the SSC Esrange Space Centre in July 2013. A near-circumpolar flight was achieved with a duration of approximately two weeks. The flight performance of the Pathfinder design is discussed for the three Crab observations conducted. The signal-to-background ratio for the observations is shown to be 0.25 ±0.03 and the Minimum Detectable Polarisation (99 % C.L.) is (28.4 ±2.2) %. A strategy for the continuation of the PoGOLite programme is outlined based on experience gained during the 2013 maiden flight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Notes

  1. Future flights are likely to use the Sun itself as a tracking target. Star trackers were originally foreseen for a one day long maiden flight of PoGOLite planned for August and were retained when a long duration flight was pursued instead.

References

  1. Lei, F., et al.: Space Sci. Rev. 82, 309 (1997)

    Article  ADS  Google Scholar 

  2. Kamae, T., et al.: Astropart. Phys. 30, 72 (2008)

    Article  ADS  Google Scholar 

  3. Axelsson, M., et al.: Astropart. Phys. 28, 327 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  4. Weisskopf, M.C., et al.: Astrophys. J. 208, 125 (1976)

    Article  ADS  Google Scholar 

  5. Novick, R., et al.: Astrophys. J. 174, 1 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  6. Weisskopf, M.C., et al.: Astrophys. J. 220, 117 (1978)

    Article  ADS  Google Scholar 

  7. Forot, M., et al.: Astrophys. J. 688, 29 (2008)

    Article  ADS  Google Scholar 

  8. Dean, A.J., et al.: Science 321, 1183 (2008)

    Article  ADS  Google Scholar 

  9. Chauvin, M., et al.: Astrophys. J. 769, 137 (2013)

    Article  ADS  Google Scholar 

  10. Chauvin, M., et al.: Astropart. Phys. 72, 1 (2016)

    Article  ADS  Google Scholar 

  11. Kislat, F., et al.: Astropart. Phys. 68, 45 (2015)

    Article  ADS  Google Scholar 

  12. Mizuno, T., et al.: Nucl. Instrum. Methods A 540, 158 (2005)

    Article  ADS  Google Scholar 

  13. Kanai, Y., et al.: Nucl. Instrum. Methods A 570, 61 (2007)

    Article  ADS  Google Scholar 

  14. Kiss, M.: Pre-flight development of the PoGOLite Pathfinder. KTH Royal Institute of Technology Doctoral Thesis (2011). ISBN: 978-91-7415-896-0

  15. Mizuno, T., et al.: Nucl. Instrum. Methods A 600, 609 (2009)

    Article  ADS  Google Scholar 

  16. Mallol, P.: A cooling system for PoGOLite – a balloon-borne soft gamma-ray polarimeter. KTH Royal Institute of Technology Master’s Thesis (2009)

  17. Kole, M.: Background Studies for the Balloon-Borne Hard X-ray Polarimeter PoGOLite. KTH Royal Institute of Technology Doctoral Thesis (2014). ISBN: 978-91-7595-337-3

  18. Takahashi, H., et al.: IEEE Nucl. Sci. Symp. Conf. Rec., 32 (2011)

  19. Kole, M., et al.: Nucl. Instrum. Methods A 770, 68 (2015)

    Article  ADS  Google Scholar 

  20. ESA SpaceWire home page, http://www.spacewire.esa.int

  21. Jönsson, L.-O.: Proceedings of the 19th ESA Symposium on European Rocket and Balloon Programmes and Related Research (2009)

  22. Jackson, M.S.: J. Instrum. 8, P04008 (2013)

    Article  Google Scholar 

  23. Marini Bettolo, C.: Performance Studies and Star Tracking for PoGOLite. KTH Royal Institute of Technology Doctoral Thesis (2010). ISBN: 978-91-7415-641-6

  24. Strömberg, J.-E.: Proceedings of the 19th ESA Symposium on European Rocket and Balloon Programmes and Related Research (2009)

  25. Rex, M., et al.: Proc. SPIE–Int. Soc. Opt. Eng. 6269, 6269H-1 (2006)

    Google Scholar 

  26. Dietz, K.L., et al.: Opt. Eng. 41(10), 2641 (2002)

    Article  ADS  Google Scholar 

  27. Lindblom Optic Design And Consulting, Varmfrontsgatan 18, 128 34 Skarpnäck. Sweden

  28. Private Communication, SSC Esrange Space Centre (2013)

  29. Weisskopf, M.C., et al.: Proc. SPIE–Int. Soc. Opt. Eng. 7732, 77320E (2010)

    Google Scholar 

  30. De Jager, O.C., et al.: Astron. Astrophys. 221, 180 (1989)

    ADS  Google Scholar 

  31. De Jager, O.C., Büsching, I.: Astron. Astrophys. 517, L9 (2010)

    Article  ADS  Google Scholar 

  32. Lyne, A.G., et al.: Mon. Not. Royal Astron. Soc. 265, 1003 (1993). Data available at http://www.jb.man.ac.uk/%7Epulsar/crab.html

  33. Takahashi, T., et al.: Publ. Astron. Soc. Jpn. 59, S35 (2007)

    Article  ADS  Google Scholar 

  34. Suzaku Public Data (dataset 104001070). Data available at http://www.darts.isas.jaxa.jp/astro/suzaku/public_seq.html

  35. Kole, M., et al.: Astropart. Phys. 62, 230 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The PoGOLite Collaboration acknowledges funding received from The Swedish National Space Board, The Knut and Alice Wallenberg Foundation, The Swedish Research Council and the Göran Gustafsson Foundation. The SSC Esrange Space Centre is thanked for their considerable support and expertise during the launch build-up and flight campaign of the PoGOLite Pathfinder. The government of the Russian Federation is thanked for permitting a circumpolar flight. Tim Thurston designed the PoGOLite mechanics which was primarily manufactured by the workshop at AlbaNova University Centre. Gilles Bogaert provided VM2000 for the scintillator array. All past members of the PoGOLite Collaboration not listed as authors on this paper are thanked for their important contributions to the development of the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Pearce.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauvin, M., Florén, HG., Jackson, M. et al. The design and flight performance of the PoGOLite Pathfinder balloon-borne hard X-ray polarimeter. Exp Astron 41, 17–41 (2016). https://doi.org/10.1007/s10686-015-9474-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-015-9474-x

Keywords

Navigation