Skip to main content
Log in

Radio astronomy ultra-low-noise amplifier for operation at 91 cm wavelength in high RFI environment

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

An ultra-low-noise input amplifier intended for a use in a radio telescope operating at 91 cm wavelength is presented. The amplifier noise temperatures are 12.8 ± 1.5 and 10.0 ± 1.5 K at ambient temperatures of 293 and 263 K respectively. The amplifier does not require cryogenic cooling. It can be quickly put in operation thus shortening losses in the telescope observation time. High linearity of the amplifier (output power at 1 dB gain compression P1dB ≥ 22 dBm, output third order intercept point OIP3 ≥ 37 dBm) enables the telescope operation in highly urbanized and industrialized regions. To obtain low noise characteristics along with high linearity, high-electron-mobility field-effect transistors were used in parallel in the circuit developed. The transistors used in the amplifier are cost-effective and commercially available. The circuit solution is recommended for similar devices working in ultra-high frequency band.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arecibo Observatory 327-MHz Gregorian Receiver, National Astronomy and Ionospheric Center, Arecibo Observatory, Puerto Rico. http://www.naic.edu/~astro/RXstatus/327/327greg.shtml. Accessed 2 April 2014

  2. Avago Technologies: 900 and 2400 MHz amplifiers using the AT-3 series low noise silicon bipolar transistors. Application Note AN 1085, Avago Technologies. http://www.avagotech.com/docs/5964-3854E (2007). Accessed 2 April 2014

  3. Avago Technologies: Field-Effect Transistor ATF-33143. Products, Avago Technologies. http://www.avagotech.com/pages/en/rf_microwave/transistors/fet/atf-33143/ (2014). Accessed 2 April 2014

  4. Bautista, J. J.: HEMT low-noise amplifiers. In: Reid, M.S. (ed.) Low-noise systems in the deep space net work, pp. 195–244. Jet Propulsion Laboratory, California Institute of Technology (2008)

  5. Belostotski, L., Haslett, J.W.: Sub-0.2 dB noise figure wideband room-temperature CMOS LNA with non-50 Ω signal-source impedance. IEEE J Solid State Circ 42, 2492–2502 (2007)

    Article  Google Scholar 

  6. Bij de Vaate, J.G., et al.: Low Cost Low Noise Phased-Array Feeding Systems for SKA Pathfinders. Publications of 13th International Symposium on Antenna Technology and Applied Electromagnetics and the Canadian Radio Science Meeting, 2009, ANTEM/URSI 2009, pp.1-4, Banff, Alberta, Canada (2009)

  7. Gaier, T., et al.: Amplifier technology for Astrophysics. Far-Ir, Sub-mm, and mm detector technology workshop, Monterey, CA (USA). http://www.sofia.usra.edu/det_workshop/papers/session4/4-05gaier_cr_edjw021022.pdf (2002). Accessed 2 April 2014

  8. Klumperink, E.A.M., et al.: Achieving Wideband Sub-1dB Noise Figure and High Gain with MOSFETs if Input Power Matching is not Required. Publications of IEEE Symposium on Radio Frequency Integrated Circuit (RFIC), pp. 673–676, Honolulu, HI http://doc.utwente.nl/58154/1/achieving.pdf (2007). Accessed 2 April 2014

  9. Kobayashi, K.V., et al.: A Cool, Sub-0.2 dB, Ultra-Low Noise Gallium Nitride Multi-Octave MMIC LNA-PA with 2-Watt Output Power. Publications of IEEE Symposium on Compound Semiconductor Integrated Circuit (CSIS’08), pp. 1–4, Monterey, CA (2008)

  10. Korolev, A.M., Shulga, V.M.: Ultra-low-noise Cooled Microwave PHEMT Amplifiers for Radio Astronomy Applications. Proceedings of the Fifth International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Sub-Millimeter Waves, pp. 894–895, Kharkov, Ukraine (2004)

  11. Korolev, A.M.: An intermediate-frequency amplifier for radio-astronomy superheterodyne receiver. Instrum Exp Tech 54, 81–83 (2011)

    Article  Google Scholar 

  12. Kulkarni, A., Parate M., Bhalerao, V.B.: Broadband 300–500 MHz Front-End System for GMRT. Giant Metre Radio Telescope. Front-End Lab Internal Technical Report. http://ncralib1.ncra.tifr.res.in:8080/jspui/bitstream/2301/563/1/300%20-%20500%20MHz%20Broadband%20Front-End%20System(2).pdf (2011). Accessed 2 April 2014

  13. Lintignat, J., Grima, M.L., Darfeuille, S., et al.: BiCMOS Differential low Noise Amplifiers for Radioastronomy Applications. The Pennsylvania State University CiteSeerX Archives. http://www.skads-eu.org/PDF/1927_lintignat.pdf (2008). Accessed 2 April 2014

  14. Pospieszalski, M.W., Wollack, E. J.: Ultra-Low-Noise, In P Field Effect Transistor Amplifiers for Radio Astronomy Receivers. Publications of 13th International Conference on Microwaves, Radar and Wireless communications, MICON-2000, vol.3, pp. 23–32. http://lambda.gsfc.nasa.gov/product/map/team_pubs/GAAS1_1.pdf (2000). Accessed 2 April 2014

  15. Weinreb, S., Bardin, J., Mani, H., Jones, G.: Matched wideband low-noise amplifiers for radio astronomy. Rev Sci Instrum 80(044702), 5 (2009)

    Google Scholar 

  16. Wilson, T.L., Rohlfs, K., Hüttemeister, S.: Tools of RadioAstronomy, 5th edn. Springer, Berlin (2009)

    Google Scholar 

  17. Xu, J., Woestenburg, B., bij de Vaate, J.G., Serdijn, W.A.: GaAs 0.5 dB NF dual-loop negative-feedback broadband low-noise amplifier IC. Electron Lett 41, 780–782 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Korolev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korolev, A.M., Zakharenko, V.V. & Ulyanov, O.M. Radio astronomy ultra-low-noise amplifier for operation at 91 cm wavelength in high RFI environment. Exp Astron 41, 215–221 (2016). https://doi.org/10.1007/s10686-015-9466-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-015-9466-x

Keywords

Navigation