Skip to main content
Log in

Electrical interferences observed in the Cassini CIRS spectrometer

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

The Composite Infrared Spectrometer (CIRS) carried onboard the Cassini spacecraft has now operated successfully for 17 years, following launch in 1997. Following insertion into Saturnian orbit in July 2004, the instrument has taken data nearly continuously, returning over 100 million interferograms (spectra) to date. Although of generally high quality, and resulting in more than 100 peer-reviewed scientific articles, the spectra are afflicted with several types of instrumental electrical (non-random) noise artifacts. These noise artifacts require either mitigation strategies (prevention), removal from the observed data, or else awareness of the affected spectral areas which must be excluded from scientific analysis. The sources and nature of these varied noise types were not readily identified until after launch. The purpose of this article is to inform users of the noise in the CIRS dataset and to serve as a ‘lesson-learned’ guide for designers of future instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Analog Devices MT-088: Analog Switches and Multiplexers Basics (2009)

  2. Brasunas, J.C., Lakew, B.: Long-term stability of the Cassini Fourier transform Spectrometer en route to Saturn. Recent Res. Devel. Optics 4, 95–113 (2004)

    Google Scholar 

  3. Carlson, et al.: Characterization and Suppresion of Electrical Interference - Spikes, Periodic Waves, and Ripples - From Cassini Composite Infrared Spectrometer (CIRS) Spectra, in Advances in Imaging, OSA Technical Digest (CD) (Optical Society of America), paper FTuA5 (2009)

  4. Carlson, et al.: Removing Artifacts in the Calibration of Cassini CIRS Spectra of Saturn and Titan?, EPSC-DPS Joint Meeting, Nantes, France (2011)

  5. Flasar, et al.: Exploring the Saturn System in the Thermal Infrared: The Composite Infrared Spectrometer. The Cassini-Huygens Mission Springer (2004)

  6. Flasar, et al.: An intense stratospheric jet on Jupiter. Nature 427, 132–135 (2004)

    Article  ADS  Google Scholar 

  7. Flasar, et al.: Temperatures, Winds, and Composition in the Saturnian system. Science 307, 1247–1251 (2005)

    Article  ADS  Google Scholar 

  8. Flasar, et al.: Titan’s Atmospheric Temperatures, Winds and Composition. Science 308, 975–978 (2005)

    Article  ADS  Google Scholar 

  9. Barney, et al.: Composite Infrared Spectrometer (CIRS) Critical Design Review Volume II. NASA Goddard Space Flight Center (1994)

  10. Griffiths, P: de Hasseth, J.A. Fourier Transform Infrared Spectrometry (2nd ed.) Wiley-Blackwell (2007)

  11. Hanel, Rudolf, A. (eds.): Exploration of the solar system by infrared remote sensing. Cambridge University Press (2003)

  12. Hesman, et al.: Saturn’s latitudinal C2H2 and C2H6 abundance profiles from Cassini/CIRS and ground-based observations. Icarus 202, 249–259 (2009)

    Article  ADS  Google Scholar 

  13. Howett, et al.: Meridional variations in stratospheric acetylene and ethane in the southern hemisphere of the saturnian atmosphere as determined from Cassini/CIRS measurements. Icarus 190, 556572 (2007)

    Article  Google Scholar 

  14. Krimigis, et al.: Magnetosphere Imaging Instrument (MIMI) on the Cassini Mission to Saturn/Titan, vol. 114, p 233329. Space Sci. Rev. (2004)

  15. Kunde, et al.: Cassini Infrared Fourier Spectroscopic Investigation, SPIE’s 1996 International Symposium on Optical Science, Engineering, and Instrumentation. International Society for Optics and Photonics (1996)

  16. Kunde, et al.: Jupiter’s Atmospheric Composition from the Cassini Thermal Infrared Spectroscopy Experiment. Science 305, 1582–1586 (2004)

    Article  ADS  Google Scholar 

  17. Lebreton, J.P., Matson, D.L.: The Huygens probe: science, payload and mission overview 104, 59100 (2002)

  18. Application Note 140, Linear Technology (2013)

  19. Macala, G.A., Lee, A.Y., Wang, E.K.: Feasibility Study of Two Cassini Reaction Wheel/Thruster Hybrid Controllers. J. Spacecr. Rocket. 51(2), 574–585 (2014)

    Article  ADS  Google Scholar 

  20. Martin, D.H., Pulpett, E.: Polarised Interferometric Spectrometry for the Millimetre and Submillimetre Spectrum. Infrared Phys. 10, 105–109 (1969)

    Article  ADS  Google Scholar 

  21. Masterson, R.A., Miller, D.W., Grogan, R.: Development of empirical and analytical reaction wheel disturbance models. AIAA Paper, 99–1204 (1999)

  22. Matson, D.L., Spilker, L.J., Lebreton, J.: The Cassini/Huygens mission to the saturnian system. Space Sci. Rev. 104(1–4), 1–58 (2002)

    Article  ADS  Google Scholar 

  23. Maymon, et al.: Optical Design of the Composite Infrared Spectrometer (CIRS) for the Cassini Mission 100 (1993)

  24. Nixon, C.A.: Remote sounding of the atmosphere of Titan (1998)

  25. Nixon, et al.: Interferences on CIRS interferograms and Spectra: A User Guide. NASA GSFC (2005)

  26. Nixon, et al.: Meridional variations of C2H2 and C2H6 in Jupiter’s atmosphere from Cassini CIRS infrared spectra. Icarus 188, 47–71 (2007)

    Article  ADS  Google Scholar 

  27. Nixon, et al.: Infrared limb sounding of Titan with the Cassini composite infrared spectrometer: effects of the mid-IR detector spatial responses. Appl. Opt. 48, 1912–1925 (2009)

    Article  ADS  Google Scholar 

  28. Nixon, et al.: User Guide to the PDS Dataset for the Cassini Composite Infrared Spectrometer (CIRS). NASA GSFC (2012)

  29. Nixon, C.A., et al.: Detection of propene in Titan’s stratosphere. ApJ 776, L14 (2013)

    Article  ADS  Google Scholar 

  30. Peralta, F., Flanagan, S.: Cassini interplanetary trajectory design. Control. Eng. Pract. 3(11), 1603–1610 (1995)

    Article  Google Scholar 

  31. Spencer, J.R., et al.: Cassini encounters Enceladus: Background and the discovery of a south polar hot spot, Science 311.5766 (2006)

  32. Takehisa, Y., Kato, Y., Hori, K.: Fault detection by mining association rules from house-keeping data. Proc. of International Symposium on Artificial Intelligence Robot. Autom. Space. 3(9) (2001)

  33. Teanby, et al.: Global and temporal variations in hydrocarbons and nitriles in Titan’s stratosphere for northern winter observed by Cassini/CIRS. Icarus 193, 595–611 (2008)

    Article  ADS  Google Scholar 

  34. Texas Instruments AN-1733 Load Transient Testing Simplified, Application Report SNOA507 (2007)

  35. Vinatier, et al.: Analysis of Cassini/CIRS limb spectra of Titan acquired during the nominal mission. I: hydrocarbons, nitriles and CO2 vertical mixing ratio profiles. Icarus 205, 559–570 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the CIRS team for their cooperation and the NASA Education office for funding the internship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheong Chan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, C., Albright, S., Gorius, N. et al. Electrical interferences observed in the Cassini CIRS spectrometer. Exp Astron 39, 367–386 (2015). https://doi.org/10.1007/s10686-015-9452-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-015-9452-3

Keywords

Navigation