Skip to main content

Hard X-ray polarimetry with Caliste, a high performance CdTe based imaging spectrometer

Abstract

Since the initial exploration of the X- and soft γ-ray sky in the 60’s, high-energy celestial sources have been mainly characterized through imaging, spectroscopy and timing analysis. Despite tremendous progress in the field, the radiation mechanisms at work in sources such as neutrons stars, black holes, and Active Galactic Nuclei are still unclear. The polarization state of the radiation is an observational parameter which brings key additional information about the physical processes in these high energy sources, allowing the discrimination between competing models which may otherwise all be consistent with other types of measurement. This is why most of the projects for the next generation of space missions covering the few tens of keV to the MeV region require a polarization measurement capability. A key element enabling this capability, in this energy range, is a detector system allowing the identification and characterization of Compton interactions as they are the main process at play. The compact hard X-ray imaging spectrometer module, developed in CEA with the generic name of “Caliste” module, is such a detector. In this paper, we present experimental results for two types of Caliste-256 modules, one based on a CdTe crystal, the other one on a CdZnTe crystal, which have been exposed to linearly polarized beams at the European Synchrotron Radiation Facility (ESRF). These results, obtained at 200 and 300 keV, demonstrate the capability of these modules to detect Compton events and to give an accurate determination of the polarization parameters (polarization angle and fraction) of the incoming beam. For example, applying an optimized selection to our data set, equivalent to select 90° Compton scattered interactions in the detector plane, we find a modulation factor Q of 0.78 ± 0.06 in the 200–300 keV range. The polarization angle and fraction are derived with accuracies of approximately 1° and 5 % respectively for both CdZnTe and CdTe crystals. The modulation factor remains larger than 0.4 when essentially no selection is made at all on the data. We also present in this paper a simple analytical model of the interactions for the detector geometry. We show that the experimental data compare very well with the simulation, and that simple geometrical effects explain some of the observed deviations between the data and the simulation. All of these results, both experimental and from simulations, prove that the Caliste-256 modules have performances allowing them to be excellent candidates as detectors with polarimetric capabilities, in particular for future space missions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Baring, M.G.: Photon splitting limits to the hardness of emission in strongly magnetized soft gamma repeaters. Astrophys. J. 440, L69 (1995)

    ADS  Article  Google Scholar 

  2. Caroli, E., et al.: Polarisation performances of CdTe pixel detector for Laue hard X-ray focusing telescopes. Exp. Astron. 20, 353–364 (2005)

    ADS  Article  Google Scholar 

  3. Chauvin, et al.: Polarimetry in the hard X-ray domain with INTEGRAL SPI. Astrophys. J. 769, 137 (2013)

    ADS  Article  Google Scholar 

  4. Coburn, W., Boggs, S.E.: Polarization of the prompt gamma-ray emission from the gamma-ray burst of December 2002. Nature 423, 415 (2003)

    ADS  Article  Google Scholar 

  5. Curado da Silva, R.M., et al.: Hard X- and soft gamma-ray polarimetry with CdTe array prototypes. IEEE Trans. Nucl. Sci. 51, 2478 (2004)

    Article  Google Scholar 

  6. Curado da Silva, R.M., et al.: Polarimetric performance of a Laue lens gamma-ray. J. Appl. Phys. 104, 084903 (2008)

    ADS  Article  Google Scholar 

  7. Curado da Silva, R.M., et al.: Polarization degree and direction angle effects on a CdZnTe focal plane performance. IEEE Trans. Nucl. Sci. 59, 1628 (2012)

    ADS  Article  Google Scholar 

  8. Dean, A.J., et al.: Polarized gamma-ray emission from the Crab. Science 321, 1183 (2008)

    ADS  Article  Google Scholar 

  9. Ferrando, P., et al.: SIMBOL-X: a formation-flying mission for hard X-ray astrophysics. Proc SPIE 5900, 195 (2005)

    ADS  Google Scholar 

  10. Ferrando, P., et al.: The COSPIX mission: focusing on the energetic and obscured Universe. 25th Texas symp. on relativistic astrophysics, December 06–10, 2010 Heidelberg (Germany) PoS(Texas 2010) p. 254 (2010)

  11. Forot, M., et al.: Polarization of the Crab pulsar and nebula as observed by the Integral/IBIS telescope. Astrophys. J. 688, 29 (2008)

    ADS  Article  Google Scholar 

  12. Gevin, O., et al.: IDeF-X ECLAIRs: a CMOS ASIC for the readout of CdTe and CdZnTe detectors for high resolution spectroscopy. IEEE Trans. Nucl. Sci. 56, 2351 (2009)

    ADS  Article  Google Scholar 

  13. Gluckstern, R.L., Hull, M.H.: Polarization dependence of the integrated bremsstrahlung cross section. Phys. Rev. 90, 1030 (1953)

    MATH  ADS  Article  Google Scholar 

  14. Götz, D., et al.: GRB 140206A: the most distant polarized gamma-ray burst. MNRAS 444, 2776 (2014)

    ADS  Article  Google Scholar 

  15. Götz, D., et al.: Variable polarization measured in the prompt emission of GRB 041219A using IBIS on board INTEGRAL. Astrophys. J. 695, L208 (2009)

    ADS  Article  Google Scholar 

  16. Harding, A.K.: Polarization characteristics of rotation-powered pulsars. In: Bellazzini, R., Costa, E., Matt, G., Tagliaferri, G. (eds.) X-ray polarimetry: a new window in Astrophysics. Cambridge University Press (2010)

  17. Harrison, F.A., et al.: The Nuclear Spectroscopic Telescope Array (NuSTAR). Proc. SPIE 7732, 27 (2010)

    Google Scholar 

  18. Iniewski, K., et al.: Modeling charge-sharing effects in pixelated CZT detectors. IEEE 2007 Nucl. Sci. Symp. Conf. Record, p. 4608 (2007)

  19. Kalemci, E., et al.: Search for polarization from the Prompt Gamma-Ray Emission of GRB 041219a with SPI on INTEGRAL. Astron J Suppl Ser 159, 75–82 (2007)

    ADS  Article  Google Scholar 

  20. Klein, O., Nishina, Y.: Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac. Z. Phys. 52, 853 (1929)

    MATH  ADS  Article  Google Scholar 

  21. Knödlseder, J., et al.: GRI: focusing on the evolving violent Universe. Exp. Astron. 23, 121 (2009)

    ADS  Article  Google Scholar 

  22. Krawczynski, H., et al.: Scientific prospects for hard X-ray polarimetry. Astropart. Phys. 34, 550 (2011)

    ADS  Article  Google Scholar 

  23. Laurent, P., et al.: Polarized gamma-ray emission from the galactic black hole Cygnus X-1. Science 332, 438 (2011)

    ADS  Article  Google Scholar 

  24. Lei, F., Dean, A.J., Hills, G.L.: Compton polarimetry in gamma-ray astronomy. Space Sci. Rev. 82, 309 (1997)

    ADS  Article  Google Scholar 

  25. Limousin, O., et al.: Caliste-256: “A CdTe imaging spectrometer for space science with a 580 μm pixel pitch”. Nucl. Instr. Meth. Phys. Res. A. 647, 46 (2011)

    ADS  Article  Google Scholar 

  26. Matt, G.: X-ray polarimetry and radio-quiet AGN. In: Bellazzini, R., Costa, E., Matt, G., Tagliaferri, G. (eds.) X-ray polarimetry: a new window in astrophysics. Cambridge University Press (2010)

  27. Muleri, F., Campana, R.: Sensitivity of stacked imaging detectors to hard X-ray polarizarion. Astrophys. J. 751, 88 (2012)

    ADS  Article  Google Scholar 

  28. Muleri, F., et al.: On the operation of X-ray polarimeters with a large field of view. Astrophys. J. 782, 28 (2014)

    ADS  Article  Google Scholar 

  29. Roques, J.P., et al.: PheniX: a new vision for the hard X-ray sky. Exp. Astron. 34, 489 (2012)

    ADS  Article  Google Scholar 

  30. Rutledge, R.E., Fox, D.B.: Re-analysis of polarization in the gamma-ray flux of GRB 021206. MNRAS 350, 1288 (2004)

  31. Skibo, J.G., et al.: Is the high-energy emission from Centaurus a compton-scattered jet radiation? Astrophys. J. 426, L23 (1994)

    ADS  Article  Google Scholar 

  32. Soffitta, P., et al.: XIPE: the X-ray imaging polarimetry explorer. Exp. Astron. (2013). doi:10.1007/s10686-013-9344-3

    Google Scholar 

  33. Von Ballmoos, et al.: A DUAL mission for nuclear astrophysics. Exp. Astron. 34, 583 (2012)

    ADS  Article  Google Scholar 

  34. Weisskopf, M.C., et al.: Measurement of the X-ray polarization of the crab nebula. Astrophys. J. 208, L125 (1976)

    ADS  Article  Google Scholar 

  35. Weisskopf, M.C., et al.: A precision measurement of the X-ray polarization of the crab nebula without pulsar contamination. Astrophys. J. 220, L117 (1978)

    ADS  Article  Google Scholar 

  36. Weisskopf, M.C., et al.: X-Ray polarimetry and its potential use for understanding neutron stars, neutron stars and pulsars. Astrophys Space Sci Libr 357, 589 (2009)

    ADS  Google Scholar 

  37. Yonetoku, D., et al.: Detection of gamma-ray polarisation in prompt emission of GRB 100826A. Astrophys. J. Lett. 743, L30 (2011)

    ADS  Article  Google Scholar 

  38. Zoglauer, A., Kanbach, G.: Doppler broadening as a lower limit to the angular resolution of next-generation Compton telescopes. Proc. SPIE 4851, 1302 (2003)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Antier.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Antier, S., Ferrando, P., Limousin, O. et al. Hard X-ray polarimetry with Caliste, a high performance CdTe based imaging spectrometer. Exp Astron 39, 233–258 (2015). https://doi.org/10.1007/s10686-015-9442-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-015-9442-5

Keywords

  • Scattering compton
  • Polarimetry
  • Schottky CdTe
  • CZT
  • Pixel detectors
  • Spectroscopy
  • Hard X-ray astrophysics