Abstract
Ultra high energy photons and neutrinos are carriers of very important astrophysical information. They may be produced at the sites of cosmic ray acceleration or during the propagation of the cosmic rays in the intergalactic medium. In contrast to charged cosmic rays, photon and neutrino arrival directions point to the production site because they are not deflected by the magnetic fields of the Galaxy or the intergalactic medium. In this work we study the characteristics of the longitudinal development of showers initiated by photons and neutrinos at the highest energies. These studies are relevant for development of techniques for neutrino and photon identification by the JEM-EUSO telescope. In particular, we study the possibility of observing the multi-peak structure of very deep horizontal neutrino showers with JEM-EUSO. We also discuss the possibility to determine the flavor content of the incident neutrino flux by taking advantage of the different characteristics of the longitudinal profiles generated by different type of neutrinos. This is of grate importance for the study of the fundamental properties of neutrinos at the highest energies. Regarding photons, we discuss the detectability of the cosmogenic component by JEM-EUSO and also estimate the expected upper limits on the photon fraction which can be obtained from the future JEM-EUSO data for the case in which there are no photons in the samples.
Similar content being viewed by others
Notes
The zenith angle \(\theta \) for which the maximum number of neutrino showers is achieved corresponds to the maximum of the product of the \(2 \sin \theta \cos \theta \) distribution with the probability that a neutrino interacts in the atmosphere which is a function of \(\theta \).
References
Gelmini, G., Kalashev, O., Semikoz, D.: GZK photons in the minimal ultrahigh energy cosmic rays model. Astropart. Phys. 28, 390 (2007)
Gelmini, G., Kalashev, O., Semikoz, D.: GZK Photons Above 10-EeV. JCAP 0711, 002 (2007)
Hooper, D., Taylor, A.M., Sarkar, S.: Cosmogenic photons as a test of ultra-high energy cosmic ray composition. Astropart. Phys. 34, 340 (2011)
Beresinsky, V., Zatsepin, G.: Cosmic rays at ultrahigh-energies (neutrino?). Phys. Lett. B 28, 423 (1969)
Stecker, F.: Diffuse fluxes of cosmic high-energy neutrinos. Astrophys. J. 228, 919 (1979)
Yoshida, S., Teshima, M.: Energy spectrum of ultrahigh-energy cosmic rays with extragalactic origin. Prog. Theor. Phys. 89, 833 (1993)
Protheroe, R., Johnson, P.: Propagation of ultrahigh-energy protons over cosmological distances and implications for topological defect models. Astropart. Phys. 4, 253 (1996)
Engel, R., Seckel, D., Stanev, T.: Neutrinos from propagation of ultra-high energy protons. Phys. Rev. D 64, 093010 (2001)
Fodor, Z., Katz, S., Ringwald, A., Tu, H.: Bounds on the cosmogenic neutrino flux. JCAP 0311, 015 (2003)
Anchordoqui, L., Goldberg, H., Hooper, D., Sarkar, S., Taylor, A.M.: Predictions for the cosmogenic neutrino flux in light of new data from the Pierre Auger Observatory. Phys. Rev. D 76, 123008 (2007)
Kotera, K., Allard, D., Olinto, A.: Cosmogenic neutrinos: parameter space and detectabilty from PeV to ZeV. JCAP 1010, 013 (2010)
Ahlers, M., Halzen, F.: Minimal Cosmogenic Neutrinos. [arXiv:1208.4181 [astro-ph.HE]]
Hooper, D., Taylor, A., Sarkar, S.: The impact of heavy nuclei on the cosmogenic neutrino flux. Astropart. Phys. 23, 11 (2005)
Ave, M., Busca, N., Olinto, A., Watson, A., Yamamoto, T.: Cosmogenic neutrinos from ultra-high energy nuclei. Astropart. Phys. 23, 19 (2005)
Gaisser, T., Halzen, F., Stanev, T.: Particle astrophysics with high-energy neutrinos. Phys. Rept. 258, 173 (1995). [Erratum-ibid., 271, 355 1996]
Halzen, F., Hooper, D.: High-energy neutrino astronomy: the cosmic ray connection. Rept. Prog. Phys. 65, 1025 (2002)
Becker, J.K.: Phys. Rept. 458, 173 (2008). [arXiv:0710.1557 [astro-ph]]
Anchordoqui, L., Montaruli, T.: In search for extraterrestrial high energy neutrinos. Ann. Rev. Nucl. Part. Sci. 60, 129 (2010)
Kuzmin, V., Tkachev, I.: Ultrahigh-energy cosmic rays and inflation relics. Phys. Rept. 320, 199 (1999)
Bhattacharjee, P., Sigl, G.: Origin and propagation of extremely high-energy cosmic rays. Phys. Rept. 327, 109 (2000)
Berezinsky, V., Sabancilar, E., Vilenkin, A.: Extremely high energy neutrinos from cosmic strings. Phys. Rev. D 84, 085006 (2011)
Whitehorn, N.: Results from IceCube. In: IceCube Particle Astrophysics Symposium (IPA 2013), May 13–15. Madison (2013). http://wipac.wisc.edu/meetings/home/IPA2013
Kashti, T., Waxman, E.: Phys. Rev. Lett. 95, 181101 (2005)
Lipari, P., Lusignoli, M., Meloni, D.: Phys. Rev. D 75, 123005 (2007)
Hümmer, S., et al.: Astropart. Phys. 34, 205 (2010)
Pakvasa, S.: Mod. Phys. Lett. A23, 1313 (2008)
Blennow, M., Meloni, D.: Phys. Rev. D80, 065009 (2009)
Beacom, J.: Phys. Rev. D68, 093005 (2003). Erratum-ibid., D72, 019901 (2005)
Block, M., Ha, P., McKay, D.: Ultrahigh energy neutrino scattering: an update. Phys. Rev. D 82, 077302 (2010)
Sjöstrand, T., Mrenna, S., Skands, P.: PYTHIA 6.4 physics and manual. JHEP 0605, 026 (2006)
Whalley, M., et al.: http://hepforge.cedar.ac.uk/lhapdf/
Nadolsky, P., et al.: Implications of CTEQ global analysis for collider observables. Phys. Rev. D 78, 013004 (2008)
Supanitsky, A.D., Medina-Tanco, G.: Neutrino initiated cascades at mid and high altitudes in the atmosphere. Astropart. Phys. 34, 8–16 (2011)
Bergmann, T., et al.: One-dimensional hybrid approach to extensive air shower simulation. Astropart. Phys. 26, 420–432 (2007)
Ostapchenko, S.: QGSJET-II: towards reliable description of very high energy hadronic interactions. Nucl. Phys. Proc. Suppl. B 151, 143–146 (2006)
Landau, L., Pomeranchuk, I.: Limits of applicability of the theory of bremsstrahlung electrons and pair production at high-energies. Dokl. Akad. Nauk SSSR 92, 535–536 (1953)
Landau, L., Pomeranchuk, I.: Electron cascade process at very high-energies. Dokl. Akad. Nauk SSSR 92, 735–738 (1953)
Migdal, A.: Bremsstrahlung and pair production in condensed media at high-energies. Phys. Rev. 103, 1811–1820 (1956)
Supanitsky, A.D., Medina-Tanco, G.: On the possibility of neutrino flavor identification at the highest energies. Phys. Rev. D 86, 093020 (2012)
Davidson, N., Nanava, G., Przedziński, T., Richter-Was, E., Was, Z.: Universal interface of TAUOLA: technical and physics documentation. Comput. Phys. Commun 183, 821–843 (2012)
Berat, C., et al.: Full simulation of space-based extensive air showers detectors with ESAF. Astropart. Phys. 33, 221–247 (2010)
Guzman, A., et al.: A study on JEM-EUSOs trigger probability for neutrino-initiated EAS. In: Proceedings of the 33rd ICRC, p. 533. Brazil (2013)
Risse, M., Homola, P.: Search for ultra-high energy photons using air showers. Mod. Phys. Lett. A22, 749–766 (2007)
Adams, J.H. Jr., et al.: (JEM-EUSO Collaboration), An evaluation of the exposure in nadir observation of the JEM-EUSO mission. Astropart. Phys. 44, 76–90 (2013)
Supanitsky, A.D., Medina-Tanco, G., Etchegoyen, A.: New numerical technique to determine primary cosmic ray composition in the ankle region. A. Astropart. Phys. 31, 75–85 (2009)
Supanitsky, A.D., Medina-Tanco, G., et al.: (JEM-EUSO Collaboration), The potential of the JEM-EUSO telescope for the astrophysics of extreme energy photons. In: Proceedings of the 32nd ICRC, vol. 2, pp. 153–156. Beijing (2011)
Silvermann, B.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London (1986)
Ave, M., et al.: New constraints from haverah park data on the photon and iron fluxes of ultrahigh-energy cosmic rays. Phys. Rev. Lett. 85, 2244–2247 (2000)
Ave, M., et al.: Constraints on the ultrahigh-energy photon flux using inclined showers from the Haverah Park array. Phys. Rev. D 65, 063007 (2002)
Risse, M., et al.: Upper limit on the photon fraction in highest-energy cosmic rays from AGASA data. Phys. Rev. Lett. 95, 171102 (2005)
Shinozaki, K., et al.: Upper limit on gamma-ray flux above 1019 eV estimated by the Akeno giant air shower array. Astrophys. J. 571, L117—L120 (2002)
Abraham, J., et al.: (Pierre Auger Collaboration), An upper limit to the photon fraction in cosmic rays above 1019 eV from the Pierre Auger observatory. Astropart. Phys. 27, 155–168 (2007)
Settimo, M., et al.: (Pierre Auger Collaboration), An update on a search for ultra-high energy photons using the Pierre Auger observatory. In: Proceedings of the 32nd ICRC, vol. 2, pp. 55–58. Beijing (2011)
Abraham, J., et al.: (Pierre Auger Collaboration), Upper limit on the cosmic-ray photon flux above 1019 eV using the surface detector of the Pierre Auger observatory. Astropart. Phys. 29, 243–256 (2008)
Rubtsov, G., et al.: Upper limit on the ultrahigh-energy photon flux from AGASA and Yakutsk data. Phys. Rev. D 73, 063009 (2006)
Glushkov, A., et al.: Constraints on the fraction of primary gamma rays at ultra-high energies from the muon data of the Yakutsk EAS array. JETP Lett. 85, 131–135 (2007)
Salamida, F., et al.: (Pierre Auger Collaboration), Update on the measurement of the CR energy spectrum above 1018 eV made using the Pierre Auger observatory. In: Proceedings of the 32nd ICRC, vol. 2, pp. 145–148. Beijing (2011)
Author information
Authors and Affiliations
Consortia
Corresponding author
Rights and permissions
About this article
Cite this article
The JEM-EUSO Collaboration., Adams, J.H., Ahmad, S. et al. Ultra high energy photons and neutrinos with JEM-EUSO. Exp Astron 40, 215–233 (2015). https://doi.org/10.1007/s10686-013-9353-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10686-013-9353-2