Skip to main content
Log in

Ultra high energy photons and neutrinos with JEM-EUSO

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

A Publisher's Erratum to this article was published on 24 July 2015

Abstract

Ultra high energy photons and neutrinos are carriers of very important astrophysical information. They may be produced at the sites of cosmic ray acceleration or during the propagation of the cosmic rays in the intergalactic medium. In contrast to charged cosmic rays, photon and neutrino arrival directions point to the production site because they are not deflected by the magnetic fields of the Galaxy or the intergalactic medium. In this work we study the characteristics of the longitudinal development of showers initiated by photons and neutrinos at the highest energies. These studies are relevant for development of techniques for neutrino and photon identification by the JEM-EUSO telescope. In particular, we study the possibility of observing the multi-peak structure of very deep horizontal neutrino showers with JEM-EUSO. We also discuss the possibility to determine the flavor content of the incident neutrino flux by taking advantage of the different characteristics of the longitudinal profiles generated by different type of neutrinos. This is of grate importance for the study of the fundamental properties of neutrinos at the highest energies. Regarding photons, we discuss the detectability of the cosmogenic component by JEM-EUSO and also estimate the expected upper limits on the photon fraction which can be obtained from the future JEM-EUSO data for the case in which there are no photons in the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. The zenith angle \(\theta \) for which the maximum number of neutrino showers is achieved corresponds to the maximum of the product of the \(2 \sin \theta \cos \theta \) distribution with the probability that a neutrino interacts in the atmosphere which is a function of \(\theta \).

References

  1. Gelmini, G., Kalashev, O., Semikoz, D.: GZK photons in the minimal ultrahigh energy cosmic rays model. Astropart. Phys. 28, 390 (2007)

    Article  ADS  Google Scholar 

  2. Gelmini, G., Kalashev, O., Semikoz, D.: GZK Photons Above 10-EeV. JCAP 0711, 002 (2007)

    Article  ADS  Google Scholar 

  3. Hooper, D., Taylor, A.M., Sarkar, S.: Cosmogenic photons as a test of ultra-high energy cosmic ray composition. Astropart. Phys. 34, 340 (2011)

    Article  ADS  Google Scholar 

  4. Beresinsky, V., Zatsepin, G.: Cosmic rays at ultrahigh-energies (neutrino?). Phys. Lett. B 28, 423 (1969)

    Article  ADS  Google Scholar 

  5. Stecker, F.: Diffuse fluxes of cosmic high-energy neutrinos. Astrophys. J. 228, 919 (1979)

    Article  ADS  Google Scholar 

  6. Yoshida, S., Teshima, M.: Energy spectrum of ultrahigh-energy cosmic rays with extragalactic origin. Prog. Theor. Phys. 89, 833 (1993)

    Article  ADS  Google Scholar 

  7. Protheroe, R., Johnson, P.: Propagation of ultrahigh-energy protons over cosmological distances and implications for topological defect models. Astropart. Phys. 4, 253 (1996)

    Article  ADS  Google Scholar 

  8. Engel, R., Seckel, D., Stanev, T.: Neutrinos from propagation of ultra-high energy protons. Phys. Rev. D 64, 093010 (2001)

    Article  ADS  Google Scholar 

  9. Fodor, Z., Katz, S., Ringwald, A., Tu, H.: Bounds on the cosmogenic neutrino flux. JCAP 0311, 015 (2003)

    Article  ADS  Google Scholar 

  10. Anchordoqui, L., Goldberg, H., Hooper, D., Sarkar, S., Taylor, A.M.: Predictions for the cosmogenic neutrino flux in light of new data from the Pierre Auger Observatory. Phys. Rev. D 76, 123008 (2007)

    Article  ADS  Google Scholar 

  11. Kotera, K., Allard, D., Olinto, A.: Cosmogenic neutrinos: parameter space and detectabilty from PeV to ZeV. JCAP 1010, 013 (2010)

    Article  ADS  Google Scholar 

  12. Ahlers, M., Halzen, F.: Minimal Cosmogenic Neutrinos. [arXiv:1208.4181 [astro-ph.HE]]

  13. Hooper, D., Taylor, A., Sarkar, S.: The impact of heavy nuclei on the cosmogenic neutrino flux. Astropart. Phys. 23, 11 (2005)

    Article  ADS  Google Scholar 

  14. Ave, M., Busca, N., Olinto, A., Watson, A., Yamamoto, T.: Cosmogenic neutrinos from ultra-high energy nuclei. Astropart. Phys. 23, 19 (2005)

    Article  ADS  Google Scholar 

  15. Gaisser, T., Halzen, F., Stanev, T.: Particle astrophysics with high-energy neutrinos. Phys. Rept. 258, 173 (1995). [Erratum-ibid., 271, 355 1996]

    Article  ADS  Google Scholar 

  16. Halzen, F., Hooper, D.: High-energy neutrino astronomy: the cosmic ray connection. Rept. Prog. Phys. 65, 1025 (2002)

    Article  ADS  Google Scholar 

  17. Becker, J.K.: Phys. Rept. 458, 173 (2008). [arXiv:0710.1557 [astro-ph]]

    Article  ADS  Google Scholar 

  18. Anchordoqui, L., Montaruli, T.: In search for extraterrestrial high energy neutrinos. Ann. Rev. Nucl. Part. Sci. 60, 129 (2010)

    Article  ADS  Google Scholar 

  19. Kuzmin, V., Tkachev, I.: Ultrahigh-energy cosmic rays and inflation relics. Phys. Rept. 320, 199 (1999)

    Article  ADS  Google Scholar 

  20. Bhattacharjee, P., Sigl, G.: Origin and propagation of extremely high-energy cosmic rays. Phys. Rept. 327, 109 (2000)

    Article  ADS  Google Scholar 

  21. Berezinsky, V., Sabancilar, E., Vilenkin, A.: Extremely high energy neutrinos from cosmic strings. Phys. Rev. D 84, 085006 (2011)

    Article  ADS  Google Scholar 

  22. Whitehorn, N.: Results from IceCube. In: IceCube Particle Astrophysics Symposium (IPA 2013), May 13–15. Madison (2013). http://wipac.wisc.edu/meetings/home/IPA2013

  23. Kashti, T., Waxman, E.: Phys. Rev. Lett. 95, 181101 (2005)

    Article  ADS  Google Scholar 

  24. Lipari, P., Lusignoli, M., Meloni, D.: Phys. Rev. D 75, 123005 (2007)

    Article  ADS  Google Scholar 

  25. Hümmer, S., et al.: Astropart. Phys. 34, 205 (2010)

    Article  ADS  Google Scholar 

  26. Pakvasa, S.: Mod. Phys. Lett. A23, 1313 (2008)

    Article  ADS  Google Scholar 

  27. Blennow, M., Meloni, D.: Phys. Rev. D80, 065009 (2009)

    ADS  Google Scholar 

  28. Beacom, J.: Phys. Rev. D68, 093005 (2003). Erratum-ibid., D72, 019901 (2005)

    ADS  Google Scholar 

  29. Block, M., Ha, P., McKay, D.: Ultrahigh energy neutrino scattering: an update. Phys. Rev. D 82, 077302 (2010)

    Article  ADS  Google Scholar 

  30. Sjöstrand, T., Mrenna, S., Skands, P.: PYTHIA 6.4 physics and manual. JHEP 0605, 026 (2006)

    Article  ADS  Google Scholar 

  31. Whalley, M., et al.: http://hepforge.cedar.ac.uk/lhapdf/

  32. Nadolsky, P., et al.: Implications of CTEQ global analysis for collider observables. Phys. Rev. D 78, 013004 (2008)

    Article  ADS  Google Scholar 

  33. Supanitsky, A.D., Medina-Tanco, G.: Neutrino initiated cascades at mid and high altitudes in the atmosphere. Astropart. Phys. 34, 8–16 (2011)

    Article  ADS  Google Scholar 

  34. Bergmann, T., et al.: One-dimensional hybrid approach to extensive air shower simulation. Astropart. Phys. 26, 420–432 (2007)

    Article  ADS  Google Scholar 

  35. Ostapchenko, S.: QGSJET-II: towards reliable description of very high energy hadronic interactions. Nucl. Phys. Proc. Suppl. B 151, 143–146 (2006)

    Article  ADS  Google Scholar 

  36. Landau, L., Pomeranchuk, I.: Limits of applicability of the theory of bremsstrahlung electrons and pair production at high-energies. Dokl. Akad. Nauk SSSR 92, 535–536 (1953)

    MATH  Google Scholar 

  37. Landau, L., Pomeranchuk, I.: Electron cascade process at very high-energies. Dokl. Akad. Nauk SSSR 92, 735–738 (1953)

    MATH  Google Scholar 

  38. Migdal, A.: Bremsstrahlung and pair production in condensed media at high-energies. Phys. Rev. 103, 1811–1820 (1956)

    Article  MATH  ADS  Google Scholar 

  39. Supanitsky, A.D., Medina-Tanco, G.: On the possibility of neutrino flavor identification at the highest energies. Phys. Rev. D 86, 093020 (2012)

    Article  ADS  Google Scholar 

  40. Davidson, N., Nanava, G., Przedziński, T., Richter-Was, E., Was, Z.: Universal interface of TAUOLA: technical and physics documentation. Comput. Phys. Commun 183, 821–843 (2012)

    Article  ADS  Google Scholar 

  41. Berat, C., et al.: Full simulation of space-based extensive air showers detectors with ESAF. Astropart. Phys. 33, 221–247 (2010)

    Article  ADS  Google Scholar 

  42. Guzman, A., et al.: A study on JEM-EUSOs trigger probability for neutrino-initiated EAS. In: Proceedings of the 33rd ICRC, p. 533. Brazil (2013)

  43. Risse, M., Homola, P.: Search for ultra-high energy photons using air showers. Mod. Phys. Lett. A22, 749–766 (2007)

    Article  ADS  Google Scholar 

  44. Adams, J.H. Jr., et al.: (JEM-EUSO Collaboration), An evaluation of the exposure in nadir observation of the JEM-EUSO mission. Astropart. Phys. 44, 76–90 (2013)

    Article  ADS  Google Scholar 

  45. Supanitsky, A.D., Medina-Tanco, G., Etchegoyen, A.: New numerical technique to determine primary cosmic ray composition in the ankle region. A. Astropart. Phys. 31, 75–85 (2009)

    Article  ADS  Google Scholar 

  46. Supanitsky, A.D., Medina-Tanco, G., et al.: (JEM-EUSO Collaboration), The potential of the JEM-EUSO telescope for the astrophysics of extreme energy photons. In: Proceedings of the 32nd ICRC, vol. 2, pp. 153–156. Beijing (2011)

  47. Silvermann, B.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London (1986)

    Book  Google Scholar 

  48. Ave, M., et al.: New constraints from haverah park data on the photon and iron fluxes of ultrahigh-energy cosmic rays. Phys. Rev. Lett. 85, 2244–2247 (2000)

    Article  ADS  Google Scholar 

  49. Ave, M., et al.: Constraints on the ultrahigh-energy photon flux using inclined showers from the Haverah Park array. Phys. Rev. D 65, 063007 (2002)

    Article  ADS  Google Scholar 

  50. Risse, M., et al.: Upper limit on the photon fraction in highest-energy cosmic rays from AGASA data. Phys. Rev. Lett. 95, 171102 (2005)

    Article  ADS  Google Scholar 

  51. Shinozaki, K., et al.: Upper limit on gamma-ray flux above 1019 eV estimated by the Akeno giant air shower array. Astrophys. J. 571, L117—L120 (2002)

    ADS  Google Scholar 

  52. Abraham, J., et al.: (Pierre Auger Collaboration), An upper limit to the photon fraction in cosmic rays above 1019 eV from the Pierre Auger observatory. Astropart. Phys. 27, 155–168 (2007)

    Article  ADS  Google Scholar 

  53. Settimo, M., et al.: (Pierre Auger Collaboration), An update on a search for ultra-high energy photons using the Pierre Auger observatory. In: Proceedings of the 32nd ICRC, vol. 2, pp. 55–58. Beijing (2011)

  54. Abraham, J., et al.: (Pierre Auger Collaboration), Upper limit on the cosmic-ray photon flux above 1019 eV using the surface detector of the Pierre Auger observatory. Astropart. Phys. 29, 243–256 (2008)

    Article  ADS  Google Scholar 

  55. Rubtsov, G., et al.: Upper limit on the ultrahigh-energy photon flux from AGASA and Yakutsk data. Phys. Rev. D 73, 063009 (2006)

    Article  ADS  Google Scholar 

  56. Glushkov, A., et al.: Constraints on the fraction of primary gamma rays at ultra-high energies from the muon data of the Yakutsk EAS array. JETP Lett. 85, 131–135 (2007)

    Article  ADS  Google Scholar 

  57. Salamida, F., et al.: (Pierre Auger Collaboration), Update on the measurement of the CR energy spectrum above 1018 eV made using the Pierre Auger observatory. In: Proceedings of the 32nd ICRC, vol. 2, pp. 145–148. Beijing (2011)

Download references

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to D. Supanitsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

The JEM-EUSO Collaboration., Adams, J.H., Ahmad, S. et al. Ultra high energy photons and neutrinos with JEM-EUSO. Exp Astron 40, 215–233 (2015). https://doi.org/10.1007/s10686-013-9353-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-013-9353-2

Keywords

Navigation