Skip to main content
Log in

Monitoring the photometric behavior of OmegaCAM with Astro-WISE

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

The OmegaCAM wide-field optical imager is the sole instrument on the VLT Survey Telescope at ESO’s Paranal Observatory. The instrument, as well as the telescope, have been designed for surveys with very good, natural seeing-limited image quality over a 1 square degree field. OmegaCAM was commissioned in 2011 and has been observing three ESO Public Surveys in parallel since October 15, 2011. We use the Astro-WISE information system to monitor the calibration of the observatory and to produce the Kilo Degree Survey (KiDS). Here we describe the photometric monitoring procedures in Astro-WISE and give a first impression of OmegaCAM’s photometric behavior as a function of time. The long-term monitoring of the observatory goes hand in hand with the KiDS survey production in Astro-WISE. KiDS is observed under partially non-photometric conditions. Based on the first year of OmegaCAM operations it is expected that a ∼ 1–2 % photometric homogeneity will be achieved for KiDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. http://www.eso.org/sci/facilities/paranal/site/paranal.html

  2. See http://www.eso.org/sci/facilities/paranal/instruments/omegacam/doc for Calibration Plan and User Requirements.

  3. The Astro-WISE Python documentation server gives at http://doc.astro-wise.org/astro.main.html an IT-technical description of the Astro-WISE object model.

  4. See the Python Documentation server at http://doc.astro-wise.org/astro.main.QuickCheckFrame.html for the description of the QuickCheckFrame class.

  5. See the Python Documentation server at http://doc.astro-wise.org/astro.main.DomeFlatFrame.html for the description of the DomeFlatFrame class.

  6. See the Python Documentation server at http://doc.astro-wise.org/astro.main.TwilightFlatFrame.html for the description of the TwilightFlatFrame class.

  7. See movie of residuals between twilight flatfield at a given rotator angle and the average of an ensemble average at http://wiki.astro-wise.org/projects:omegacam:portal:illuminationcorrection.

  8. See the Python Documentation server at http://doc.astro-wise.org/astro.main.PhotometricParameters.html for the description of the PhotometricParameters class.

  9. See the Python Documentation server at http://doc.astro-wise.org/astro.main.PhotRefCatalog.html for the description of the PhotRefCatalog class.

  10. To convert to \(e^-\)/s: the typical gain for OmegaCAM;s detectors is ∼ 2.5–2.6e/ADU.

  11. See the Python Documentation server at http://doc.astro-wise.org/astro.main.PhotometricExtinctionReport.html for the description of the PhotometricExtinctionReport class.

  12. See the Python Documentation server at http://doc.astro-wise.org/astro.main.PhotSkyBrightness.html for the description of the PhotSkyBrightness class.

  13. A detailed description of the illumination characterization and correction is given in commissioning document VST-TRE-OCM-23100-3608 (available at http://wiki.astro-sise.org/projects:omegacam:portal:illuminationcorrection).

  14. For u only the twilight flat is used see commissioning document VST-TRE-OCM-23100-3608 (available at http://wiki.astro-sise.org/projects:omegacam:portal:illuminationcorrection) for an explanation.

  15. See the Python Documentation server at http://doc.astro-wise.org/astro.main.IlluminationCorrection.html for the description of the IlluminationCorrection class.

References

  1. Arnaboldi, M., et al.: ESO public surveys with the VST and VISTA. Messenger 127, 28 (2007)

    ADS  Google Scholar 

  2. Begeman, K.G., Belikov, A.N., Boxhoorn, D.R., Valentijn, E.A.: The Astro-WISE datacentric information system. Exp. Astron. (2012). http://adsabs.harvard.edu/doi/10.1007/s10686-012-9311-4

  3. Capaccioli,M., Schipani, P.: The VLT survey telescope opens to the sky: history of a commissioning. Messenger 146, 2 (2011)

    ADS  Google Scholar 

  4. de Jong, J.T.A., Verdoes Kleijn, G.A., Kuijken, K.H., Valentijn, E.A.: The kilo-degree survey. Exp. Astron. (2012). http://adsabs.harvard.edu/abs/2012arXiv1206.1254D

  5. Emerson, J.P., Sutherland, W.J. VISTA: status and performance. In: Proc. of SPIE, SPIE Conf. Ser., vol. 7733, 4E (2010)

  6. Filippi, G., Jaque, S., Liello, F., Chini, R. EVALSO: a high-bandwidth communication infrastructure to efficiently connect the ESO Paranal and the Cerro Armazones observatories to Europe. In: Proc. of SPIE , SPIE Conf. Ser., vol. 7740, 49F (2010)

  7. Koch, A., Odenkirchen, M., Grebel, E.K., Caldwell, J.A.R.: A calibration map for wide field imager photometry. Astron. Nachr. 325, 299 (2004)

    Article  ADS  Google Scholar 

  8. Kuijken, K.: OmegaCAM: ESO’s newest imager. Messenger 146, 8 (2011)

    ADS  Google Scholar 

  9. Landolt, A.U.: UBVRI photometric standard stars in the magnitude range 11.5–16.0 around the celestial equator. Astron. J. 104, 340 (1992)

    Article  ADS  Google Scholar 

  10. Manfroid, J., Selman, F., Jones, H.: Achieving 1 % photometric accuracy with the ESO wide field imager. Messenger 104, 16 (2001)

    ADS  Google Scholar 

  11. Patat, F., et al.: Optical atmospheric extinction over Cerro Paranal. A & A 527, A91 (2011)

    Article  ADS  Google Scholar 

  12. Regnault, N.: Photometric calibration of the supernova legacy survey fields. In: Sterken, C. (ed.) The Future of Photometric, Spectrophotometric and Polarimetric Standardization. Astron. Soc. Pac. Conf. Ser., Vol. 364, p. 587 (2007)

  13. Stetson, P.B.: Homogeneous photometry for star clusters and resolved galaxies. II. Photometric standard stars. Publ. Astron. Soc. Pac. 112, 925 (2000)

    Article  ADS  Google Scholar 

  14. Valentijn, E.A., et al.: Astro-WISE: chaining to the universe. In: Shaw, R.A., Hill, F., Bell, D.-J. (eds.) Proc. of ADASS XVI. Astron. Soc. Pac. Conf. Ser., Vol. 376, p. 491 (2007)

  15. Verdoes Kleijn, G., Vermeij, R., Valentijn, E., Kuijken, K.: The secondary standards programme for OmegaCAM. In: Sterken, C. (ed.) The Future of Photometric, Spectrophotometric and Polarimetric Standardization. Astron. Soc. Pac. Conf. Ser., Vol. 364, p. 103 (2007)

  16. Verdoes Kleijn, G.A., Belikov, A.N., McFarland, J.P.: The data zoo in Astro-WISE. Exp. Astron. (2012). http://adsabs.harvard.edu/doi/10.1007/s10686-012-9314-1

Download references

Acknowledgments

The OmegaCAM consortium was formed in response to an announcement of opportunity from ESO, and comprises institutes in the Netherlands (NOVA, in particular the Kapteyn Institute Groningen and Leiden Observatory), Germany (in particular University Observatories of Munich, Gottingen and Bonn) and Italy (INAF, in particular Padua and Naples observatories). The ESO Optical Detector Team designed and built the detector system. OmegaCAM is headed by PI K. Kuijken (Leiden University). We acknowledge the good support by ESO staff during OmegaCAM commissioning, with special thanks to Steffen Mieske and Dietrich Baade. OmegaCAM is funded by grants from the Dutch Organization for Research in Astronomy (NOVA), the German Federal Ministry of Education, Science, Research and Technology (grants 05 AV9MG1/7, AV9WM2/5, 05 AV2MGA/6 and 05 AV2WM1/2), and the Italian Consorzio Nazionale per l’Astronomia e l’Astrofisica (CNAA) and Istituto Nazionale di Astrofisica (INAF), in addition to manpower and materials provided by the partner institutes. OmegaCAM dataflow operations in The Netherlands are supported by Target (www.rug.nl/target).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Verdoes Kleijn.

Appendix

Appendix

Fig. 20
figure 20

Photometric scale in Sloan r on sky and in dome as a function of over 10 months of survey operations for all 32 science CCDs. The green filled circles denote zeropoints obtained from SA field observations. The blue and red filled circles are dome-screen observations from Quick check from primary and secondary set respectively.The latter have their average value converted to an arbitrary zeropoint (not a fit!). See Section 5.4 for a discussion

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verdoes Kleijn, G.A., Kuijken, K.H., Valentijn, E.A. et al. Monitoring the photometric behavior of OmegaCAM with Astro-WISE. Exp Astron 35, 103–130 (2013). https://doi.org/10.1007/s10686-012-9325-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-012-9325-y

Keywords

Navigation