Skip to main content
Log in

LEMUR: Large European module for solar Ultraviolet Research

European contribution to JAXA’s Solar-C mission

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

The solar outer atmosphere is an extremely dynamic environment characterized by the continuous interplay between the plasma and the magnetic field that generates and permeates it. Such interactions play a fundamental role in hugely diverse astrophysical systems, but occur at scales that cannot be studied outside the solar system. Understanding this complex system requires concerted, simultaneous solar observations from the visible to the vacuum ultraviolet (VUV) and soft X-rays, at high spatial resolution (between 0.1′′ and 0.3′′), at high temporal resolution (on the order of 10 s, i.e., the time scale of chromospheric dynamics), with a wide temperature coverage (0.01 MK to 20 MK, from the chromosphere to the flaring corona), and the capability of measuring magnetic fields through spectropolarimetry at visible and near-infrared wavelengths. Simultaneous spectroscopic measurements sampling the entire temperature range are particularly important. These requirements are fulfilled by the Japanese Solar-C mission (Plan B), composed of a spacecraft in a geosynchronous orbit with a payload providing a significant improvement of imaging and spectropolarimetric capabilities in the UV, visible, and near-infrared with respect to what is available today and foreseen in the near future. The Large European Module for solar Ultraviolet Research (LEMUR), described in this paper, is a large VUV telescope feeding a scientific payload of high-resolution imaging spectrographs and cameras. LEMUR consists of two major components: a VUV solar telescope with a 30 cm diameter mirror and a focal length of 3.6 m, and a focal-plane package composed of VUV spectrometers covering six carefully chosen wavelength ranges between 170 Å and 1270 Å. The LEMUR slit covers 280′′ on the Sun with 0.14′′ per pixel sampling. In addition, LEMUR is capable of measuring mass flows velocities (line shifts) down to 2 km s − 1 or better. LEMUR has been proposed to ESA as the European contribution to the Solar C mission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Solar-C Working Group, 2011, Interim Report on the Solar-C Mission Concept. http://hinode.nao.ac.jp/SOLAR-C/archive_e.html.

  2. Currently foreseen to be launched in 2017 and no later than 2018, respectively.

  3. In low Earth orbit, this effect would be much more severe and compensation heaters would be needed to dampen short-term temperature excursions.

  4. Mirrors with <2 Å rms micro-roughness are routinely produced by companies such as Zeiss for EUV lithography. Moreover, at longer wavelengths, samples with <2 Å rms micro-roughness have been produced for the SPICE instrument to be flown on Solar Orbiter.

References

  1. Trujillo Bueno, J.: Recent advances in chromospheric and coronal polarization diagnostics. In: Hasan, S.S., Rutten, R.J. (eds.) Magnetic Coupling between the Interior and Atmosphere of the Sun, p. 118 (2010)

  2. Harra, L.K., Sakao, T., Mandrini, C.H., Hara, H., Imada, S., Young, P.R., van Driel-Gesztelyi, L., Baker, D.: Outflows at the edges of active regions: contribution to solar wind formation? Astrophys. J. Lett. 676, L147 (2008)

    Article  ADS  Google Scholar 

  3. Bryans, P., Young, P.R., Doschek, G.A.: Multiple component outflows in an active region observed with the EUV imaging spectrometer on Hinode. Astrophys. J. 715, 1012 (2010)

    Article  ADS  Google Scholar 

  4. Schrijver, C.J., De Rosa, M.L.: Photospheric and heliospheric magnetic fields. Sol. Phys. 212, 165 (2003)

    Article  ADS  Google Scholar 

  5. Del Zanna, G., Mason, H.E., Cirtain, J.: SOHO/CDS observations of quiescent active region loops. In: SOHO-17, vol. 617. ESA Special Publication (2006)

  6. Innes, D.E., Inhester, B., Axford, W.I., Wilhelm, K.: Bi-directional plasma jets produced by magnetic reconnection on the Sun. Nature 386, 811 (1997)

    Article  ADS  Google Scholar 

  7. Teriaca, L., Banerjee, D., Doyle, J.G.: SUMER observations of Doppler shift in the quiet Sun and in an active region. Astron. Astrophys. 349, 636 (1999)

    ADS  Google Scholar 

  8. Aschwanden, M.J., Fletcher, L., Schrijver, C.J., Alexander, D.: Coronal loop oscillations observed with the Transition Region and Coronal Explorer. Astrophys. J. 520, 880 (1999)

    Article  ADS  Google Scholar 

  9. Wang, T., Solanki, S.K., Curdt, W., Innes, D.E., Dammasch, I.E.: Doppler shift oscillations of hot solar coronal plasma seen by SUMER: a signature of loop oscillations? Astrophys. J. Lett. 574, L101 (2002)

    Article  ADS  Google Scholar 

  10. Mariska, J.T., Muglach, K.: Doppler-shift, intensity, and density oscillations observed with the extreme ultraviolet imaging spectrometer on Hinode. Astrophys. J. 713, 573 (2010)

    Article  ADS  Google Scholar 

  11. Wiegelmann, T., Neukirch, T.: An optimization principle for the computation of MHD equilibria in the solar corona. Astron. Astrophys. 457, 1053 (2006)

    Article  ADS  Google Scholar 

  12. De Pontieu, B., McIntosh, S.W., Carlsson, M., Hansteen, V.H., Tarbell, T.D., Schrijver, C.J., Title, A.M., Shine, R.A., Tsuneta, S., Katsukawa, Y., Ichimoto, K., Suematsu, Y., Shimizu, T., Nagata, S.: Chromospheric Alfvénic waves strong enough to power the solar wind. Science 318, 1574 (2007)

    Article  ADS  Google Scholar 

  13. Cirtain, J.W., Golub, L., Lundquist, L., van Ballegooijen, A., Savcheva, A., Shimojo, M., DeLuca, E., Tsuneta, S., Sakao, T., Reeves, K., Weber, M., Kano, R., Narukage, N., Shibasaki, K.: Evidence for Alfvén waves in solar X-ray jets. Science 318, 1580 (2007)

    Article  ADS  Google Scholar 

  14. De Pontieu, B., McIntosh, S.W., Hansteen, V.H., Schrijver, C.J.: Observing the roots of solar coronal heating—in the chromosphere. Astrophys. J. Lett. 701, L1 (2009)

    Article  ADS  Google Scholar 

  15. De Pontieu, B., McIntosh, S.W., Carlsson, M., Hansteen, V.H., Tarbell, T.D., Boerner, P., Martinez-Sykora, J., C.Schrijver, J., Title, A.M.: The origins of hot plasma in the solar corona. Science 331, 55 (2011)

    Article  ADS  Google Scholar 

  16. Del Zanna, G., Mason, H.E.: Solar active regions: SOHO/CDS and TRACE observations of quiescent coronal loops. Astron. Astrophys. 406, 1089 (2003)

    Article  ADS  Google Scholar 

  17. Warren, H.P., Kim, D.M., DeGiorgi, A.M., Ugarte-Urra, I.: Modeling evolving coronal loops with observations from stereo, Hinode, and trace. Astrophys. J. 713, 1095 (2010)

    Article  ADS  Google Scholar 

  18. Bhattacharjee, A., Huang, Y., Yang, H., Rogers, B.: Fast reconnection in high-Lundquist-number plasmas due to the plasmoid instability. Phys. Plasmas 16(11), 112102 (2009)

    Article  ADS  Google Scholar 

  19. Edmondson, J.K., Antiochos, S.K., DeVore, C.R., Zurbuchen, T.H.: Formation and reconnection of three-dimensional current sheets in the solar corona. Astrophys. J. 718, 72 (2010)

    Article  ADS  Google Scholar 

  20. Manchester, W. IV: Solar atmospheric dynamic coupling due to shear motions driven by the lorentz force. Astrophys. J. 666, 532 (2007)

    Article  ADS  Google Scholar 

  21. Green, L.M., Kliem, B., Wallace, A.J.: Photospheric flux cancellation and associated flux rope formation and eruption. Astron. Astrophys. 526, A2 (2011)

    Article  ADS  Google Scholar 

  22. van Ballegooijen, A.A., Martens, P.C.H.: Formation and eruption of solar prominences. Astrophys. J. 343, 971 (1989)

    Article  ADS  Google Scholar 

  23. Attrill, G.D.R., Harra, L.K., van Driel-Gesztelyi, L., Wills-Davey, M.J.: Revealing the fine structure of coronal dimmings and associated flows with Hinode/EIS. Implications for understanding the source regions of sustained outflow following CMEs. Sol. Phys. 264, 119 (2010)

    Article  ADS  Google Scholar 

  24. Krieger, A.S., Timothy, A.F., Roelof, E.C.: A coronal hole and its identification as the source of a high velocity solar wind stream. Sol. Phys. 29, 505 (1973)

    Article  ADS  Google Scholar 

  25. Wilhelm, K., Dammasch, I.E., Marsch, E., Hassler, D.M.: On the source regions of the fast solar wind in polar coronal holes. Astron. Astrophys. 353, 749 (2000)

    ADS  Google Scholar 

  26. Tu, C., Zhou, C., Marsch, E., Xia, L., Zhao, L., Wang, J., Wilhelm, K.: Solar wind origin in coronal funnels. Science 308, 519 (2005)

    Article  ADS  Google Scholar 

  27. Wang, Y., Ko, Y., Grappin, R.: Slow solar wind from open regions with strong low-coronal heating. Astrophys. J. 691, 760 (2009)

    Article  ADS  Google Scholar 

  28. Del Zanna, G., Bromage, B.J.I., Mason, H.E.: Spectroscopic characteristics of polar plumes. Astron. Astrophys. 398, 743 (2003)

    Article  ADS  Google Scholar 

  29. Teriaca, L., Poletto, G., Romoli, M., Biesecker, D.A.: The nascent solar wind: origin and acceleration. Astrophys. J. 588, 566 (2003)

    Article  ADS  Google Scholar 

  30. Gabriel, A.H., Bely-Dubau, F., Lemaire, P.: The contribution of polar plumes to the fast solar wind. Astrophys. J. 589, 623 (2003)

    Article  ADS  Google Scholar 

  31. Banerjee, D., Gupta, G.R., Teriaca, L.: Propagating MHD waves in coronal holes. Space Sci. Rev. 158, 267–288 (2011)

    Article  ADS  Google Scholar 

  32. Tsuneta, S., Ichimoto, K., Katsukawa, Y., Lites, B.W., Matsuzaki, K., Nagata, S., Orozco Suárez, D., Shimizu, T., Shimojo, M., Shine, R.A., Suematsu, Y., Suzuki, T.K., Tarbell, T.D., Title, A.M.: The magnetic landscape of the Sun’s polar region. Astrophys. J. 688, 1374 (2008)

    Article  ADS  Google Scholar 

  33. Doschek, G.A., Warren, H.P., Mariska, J.T., Muglach, K., Culhane, J.L., Hara, H., Watanabe, T.: Flows and nonthermal velocities in solar active regions observed with the EUV imaging spectrometer on Hinode: a tracer of active region sources of heliospheric magnetic fields? Astrophys. J. 686, 1362–1371 (2008)

    Article  ADS  Google Scholar 

  34. Del Zanna, G., Aulanier, G., Klein, K.-L., Török, T.: A single picture for solar coronal outflows and radio noise storms. Astron. Astrophys. 526, A137 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Teriaca.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teriaca, L., Andretta, V., Auchère, F. et al. LEMUR: Large European module for solar Ultraviolet Research. Exp Astron 34, 273–309 (2012). https://doi.org/10.1007/s10686-011-9274-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-011-9274-x

Keywords

Navigation