Skip to main content

Solar magnetism eXplorer (SolmeX)

Exploring the magnetic field in the upper atmosphere of our closest star


The magnetic field plays a pivotal role in many fields of Astrophysics. This is especially true for the physics of the solar atmosphere. Measuring the magnetic field in the upper solar atmosphere is crucial to understand the nature of the underlying physical processes that drive the violent dynamics of the solar corona—that can also affect life on Earth. SolmeX, a fully equipped solar space observatory for remote-sensing observations, will provide the first comprehensive measurements of the strength and direction of the magnetic field in the upper solar atmosphere. The mission consists of two spacecraft, one carrying the instruments, and another one in formation flight at a distance of about 200 m carrying the occulter to provide an artificial total solar eclipse. This will ensure high-quality coronagraphic observations above the solar limb. SolmeX integrates two spectro-polarimetric coronagraphs for off-limb observations, one in the EUV and one in the IR, and three instruments for observations on the disk. The latter comprises one imaging polarimeter in the EUV for coronal studies, a spectro-polarimeter in the EUV to investigate the low corona, and an imaging spectro-polarimeter in the UV for chromospheric studies. SOHO and other existing missions have investigated the emission of the upper atmosphere in detail (not considering polarization), and as this will be the case also for missions planned for the near future. Therefore it is timely that SolmeX provides the final piece of the observational quest by measuring the magnetic field in the upper atmosphere through polarimetric observations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19


  1. 1.

    Fineschi, S., Solanki, S., COMPASS Team: COMPASS: coronal magnetism, plasma and activity studies from space: a formation flying mission to measure the solar magnetism. Proposal to ESA Cosmic Vision, pp. 2015–2025 (2007)

  2. 2.

    De Pontieu, B., McIntosh, S.W., Carlsson, M., et al.: Science 318, 1574 (2007)

    ADS  Article  Google Scholar 

  3. 3.

    McIntosh, S.W., De Pontieu, B.: Astrophys. J. 707, 524 (2009)

    ADS  Article  Google Scholar 

  4. 4.

    Peter, H.: Astron. Astrophys. 521, A51 (2010)

    ADS  Article  Google Scholar 

  5. 5.

    Centeno, R., Trujillo Bueno, J., Asensio Ramos, A.: Astrophys. J. 708, 1579 (2010)

    ADS  Article  Google Scholar 

  6. 6.

    Feldman, U., Dammasch, I.E., Wilhelm, K.: Astrophys. J. 558, 423 (2001)

    ADS  Article  Google Scholar 

  7. 7.

    Judge, P., Carlsson, M.: Astrophys. J. 719, 469 (2010)

    ADS  Article  Google Scholar 

  8. 8.

    Forbes, T.G., Linker, J.A., Chen, J., et al.: Space Sci. Rev. 123, 251 (2006)

    ADS  Article  Google Scholar 

  9. 9.

    Stix, M.: The Sun, 2nd edn. Springer, Berlin (2002)

    Book  Google Scholar 

  10. 10.

    Harvey, J.W.: Magnetic fields associated with solar active-region prominences. PhD thesis, Univ. Colorado, Boulder (1969)

  11. 11.

    Charvin, P.: Ann. Astrophys. 28, 877 (1965)

    ADS  Google Scholar 

  12. 12.

    Fineschi, S.: ASP Conf. Series 248, 597 (2001)

    ADS  Google Scholar 

  13. 13.

    Bommier, V., Sahal-Brechot, S.: Solar Phys. 78, 157 (1982)

    ADS  Article  Google Scholar 

  14. 14.

    Raouafi, N.E., Lemaire, P., Sahal-Bréchot, S.: Astron. Astrophys. 345, 999 (1999)

    ADS  Google Scholar 

  15. 15.

    Raouafi, N.E., Sahal-Bréchot, S., Lemaire, P.: Astron. Astrophys. 396, 1019 (2002)

    ADS  Article  Google Scholar 

  16. 16.

    Casini, R., Judge, P.G.: Astrophys. J. 522, 524 (1999)

    ADS  Article  Google Scholar 

  17. 17.

    Tomczyk, S., McIntosh, S.W., Keil, S.L., et al.: Science 317, 1192 (2007)

    ADS  Article  Google Scholar 

  18. 18.

    Lin, H., Penn, M.J., Tomczyk, S.: Astrophys. J. 541, L83 (2000)

    ADS  Article  Google Scholar 

  19. 19.

    Lin, H., Kuhn, J.R., Coulter, R.: Astrophys. J. 613, L177 (2004)

    ADS  Article  Google Scholar 

  20. 20.

    Manso Sainz, R., Trujillo Bueno, J.: In: Berdyugina, S.V., et al. (eds.) Solar Polarization 5. ASP Conf. Series, vol. 405, pp. 423–428 (2009)

  21. 21.

    Trujillo Bueno, J., Štěpán, J., Casini, R.: Astrophys. J. 738, L11 (2011)

    ADS  Article  Google Scholar 

  22. 22.

    Trujillo Bueno, J.: In: Kuhn, J., et al. (eds.) Solar Polarization 6. ASP Conf. Series, vol. 437, pp. 83–98 (2011)

  23. 23.

    Trujillo Bueno, J., Landi Degl’Innocenti, E., Collados, M., et al.: Nature 415, 403 (2002)

    ADS  Article  Google Scholar 

  24. 24.

    Kobayashi, K., Tsuneta, S., Trujillo Bueno, J., et al.: AGU Fall Meeting Abstracts, p. B1632 (2010)

  25. 25.

    Henze, W. Jr., Tandberg-Hanssen, E., Hagyard, M.J., et al.: Solar Phys. 81, 231 (1982)

    ADS  Article  Google Scholar 

  26. 26.

    Hagyard, M.J., Teuber, D., West, E.A., et al.: Solar Phys. 84, 13 (1983)

    ADS  Article  Google Scholar 

  27. 27.

    Lites, B.: In: Mathys, G., Solanki, S.K., Wickramasinghe, D.T. (eds.) Magnetic Fields Across the Hertzsprung–Russell Diagram. ASP Conf. Series, vol. 248, pp. 553–561 (2001)

  28. 28.

    Peter, H., Gudiksen, B., Nordlund, Å.: Astrophys. J. 617, L85 (2004)

    ADS  Article  Google Scholar 

  29. 29.

    Peter, H., Gudiksen, B., Nordlund, Å.: Astrophys. J. 638, 1086 (2006)

    ADS  Article  Google Scholar 

  30. 30.

    Vivès, S., Lamy, P., Levacher, P., et al.: SPIE Conf. Series 6265, 24–1 (2006)

    Google Scholar 

  31. 31.

    Lamy, P., Vivès, S., Damé, L., Koutchmy, S.: SPIE Conf. Ser. 7010, pp. 1H–1 (2008)

    ADS  Google Scholar 

  32. 32.

    Turck-Chièze, S., Lamy, P., Carr, C., et al.: Exp. Astron. 23, 1017 (2009)

    ADS  Article  Google Scholar 

  33. 33.

    Romoli, M., Fineschi, S., Gardner, L.D., Kohl, J.L.: SPIE Conf. Ser. 2283, 288 (1994)

    ADS  Google Scholar 

  34. 34.

    Khan, A., Belluzzi, L., Landi Degl’Innocenti, E., et al.: Astron. Astrophys. 529, A12 (2011)

    ADS  Article  Google Scholar 

  35. 35.

    Khan, A., Landi Degl’Innocenti, E.: Astron. Astrophys. 532, A70 (2011)

    ADS  Article  Google Scholar 

  36. 36.

    Tomczyk, S., Card, G.L., Darnell, T.: Solar Phys. 247, 411 (2008)

    ADS  Article  Google Scholar 

  37. 37.

    del Toro Iniesta, J.C., Collados, M.: Appl. Opt. 39, 1637 (2000)

    ADS  Article  Google Scholar 

  38. 38.

    Winter, H., Ortjohann, H.W.: Rev. Sci. Instrum. 58(3), 359 (1987)

    ADS  Article  Google Scholar 

  39. 39.

    Cebula, R.P., Thuillier, G.O., Vanhoosier, M.E., et al.: Geophys. Res. Lett. 23, 2289 (1996)

    ADS  Article  Google Scholar 

  40. 40.

    Solanki, S.K., Barthol, P., Danilovic, S., et al.: Astrophys. J. 723, L127 (2010)

    ADS  Article  Google Scholar 

  41. 41.

    Trujillo Bueno, J., Landi Degl’Innocenti, E., Casini, R., Martínez Pillet, V.: In: Favata, F., et al. (eds.) Trends in Space Science and Cosmic Vision 2020, (ESA SP-588), p. 203 (2005)

  42. 42.

    Domingo, V., Fleck, A.I., und Poland, B.: Solar Phys. 162, 1 (1995)

    ADS  Article  Google Scholar 

  43. 43.

    Handy, B.N., et al.: Solar Phys. 187, 229 (1999)

    ADS  Article  Google Scholar 

  44. 44.

    Kosugi, T., Matsuzaki, K., Sakao, T., et al.: Solar Phys. 243, 3 (2007)

    ADS  Article  Google Scholar 

  45. 45.

    Pesnell, W.D., Thompson, B.T., Chamberlin, P.C.: The Solar Dynamics Observatory, Solar Phys. (2011, submitted). doi:10.1007/s11207-011-9841-3

Download references

Author information



Corresponding author

Correspondence to Hardi Peter.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Peter, H., Abbo, L., Andretta, V. et al. Solar magnetism eXplorer (SolmeX). Exp Astron 33, 271–303 (2012).

Download citation


  • Sun: atmosphere
  • Magnetic fields
  • Space vehicles: instruments
  • Techniques: polarimetic
  • ESA Cosmic Vision