Skip to main content
Log in

GRIPS - Gamma-Ray Imaging, Polarimetry and Spectroscopy

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

We propose to perform a continuously scanning all-sky survey from 200 keV to 80 MeV achieving a sensitivity which is better by a factor of 40 or more compared to the previous missions in this energy range (COMPTEL, INTEGRAL; see Fig. 1). These gamma-ray observations will be complemented by observations in the soft X-ray and (near-)infrared region with the corresponding telescopes placed on a separate satellite. The Gamma-Ray Imaging, Polarimetry and Spectroscopy (“GRIPS”) mission with its three instruments Gamma-Ray Monitor (GRM), X-Ray Monitor (XRM) and InfraRed Telescope (IRT) addresses fundamental questions in ESA’s Cosmic Vision plan. Among the major themes of the strategic plan, GRIPS has its focus on the evolving, violent Universe, exploring a unique energy window. We propose to investigate γ-ray bursts and blazars, the mechanisms behind supernova explosions, nucleosynthesis and spallation, the enigmatic origin of positrons in our Galaxy, and the nature of radiation processes and particle acceleration in extreme cosmic sources including pulsars and magnetars. The natural energy scale for these non-thermal processes is of the order of MeV. Although they can be partially and indirectly studied using other methods, only the proposed GRIPS measurements will provide direct access to their primary photons. GRIPS will be a driver for the study of transient sources in the era of neutrino and gravitational wave observatories such as IceCUBE and LISA, establishing a new type of diagnostics in relativistic and nuclear astrophysics. This will support extrapolations to investigate star formation, galaxy evolution, and black hole formation at high redshifts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Abdo, A.A., et al.: Detection of the energetic pulsar PSR B1509-58 and its pulsar wind nebula in MSH 15-52 using the Fermi-large area telescope. Astrophys. J. 714, 927 (2010)

    Article  ADS  Google Scholar 

  2. Abdo, A.A., Ackermann, M., Ajello, M., et al.: The first catalog of active galactic nuclei detected by the Fermi large area telescope. Astrophys. J. 715, 429 (2010)

    Article  ADS  Google Scholar 

  3. Abdo, A.A., Ackermann, M., Ajello, M., et al.: Gamma-ray emission concurrent with the nova in the symbiotic binary V407 Cygni. Science 329, 817 (2010)

    Article  ADS  Google Scholar 

  4. Abdo, A.A., et al.: The first Fermi large area telescope catalog of gamma-ray pulsars. Astrophys. J. Suppl. 187, 460 (2010)

    Article  ADS  Google Scholar 

  5. Ajello, M., Greiner, J., et al.: BAT X-ray survey. I. Methodology and X-ray identification. Astrophys. J. 678, 102 (2008)

    Article  ADS  Google Scholar 

  6. Bai, X.-N., Spitkovsky, A.: Uncertainties of modeling gamma-ray pulsar light curves using vacuum dipole magnetic field. Astrophys. J. 715, 1270 (2010)

    Article  ADS  Google Scholar 

  7. Bai, X.-N., Spitkovsky, A.: Modeling of gamma-ray pulsar light curves using the force-free magnetic field. Astrophys. J. 715, 1282 (2010)

    Article  ADS  Google Scholar 

  8. Boggs, S.E.: Boggs: the advanced Compton telescope mission. New Astron. Rev. 50, 604 (2006)

    Article  ADS  Google Scholar 

  9. Böttcher, M., Reimer, A., Marscher, A.P.: Implications of the very high energy gamma-ray detection of the quasar 3C279. Astrophys. J. 703, 1168 (2009)

    Article  ADS  Google Scholar 

  10. Bouchet, L., Roques, J.P., Jourdain, E.: On the morphology of the electron-positron annihilation emission as seen by SPI/INTEGRAL. Astrophys. J. 720, 1772 (2010)

    Article  ADS  Google Scholar 

  11. Bromm, V., Loeb, A.: High-redshift gamma-ray bursts from population III progenitors. Astrophys. J. 642, 382 (2006)

    Article  ADS  Google Scholar 

  12. Caccia, S., Bertucci, G., Maiocchi, D., et al.: A mixed-signal spectroscopic-grade and high-functionality CMOS readout cell for semiconductor X-/γ-ray pixel detectors. IEEE Trans. Nucl. Sci. 55, 2721 (2008)

    Article  ADS  Google Scholar 

  13. Chupp, E.L., Ryan, J.M.: High energy neutron and pion-decay gamma-ray emissions from solar flares. Res. Astron. Astrophys. 9, 11 (2009)

    Article  ADS  Google Scholar 

  14. Cline, J.M., Frey, A.R., Chen, F.: Metastable dark matter mechanisms for INTEGRAL 511 keV γ rays and DAMA/CoGeNT events. Phys. Rev. D83, 083511 (2011)

    ADS  Google Scholar 

  15. de Jager, O.C., Slane, P.O., LaMassa, S.: Probing the radio to X-ray connection of the Vela X pulsar wind nebula with Fermi LAT and H.E.S.S. Astrophys. J. 689, L125 (2008)

    Article  Google Scholar 

  16. Gal-Yam, A., Mazzali, P., Ofek, E. O., et al.: Gal-Yam: supernova 2007bi as a pair-instability explosion. Nature 462, 624 (2009)

    Article  ADS  Google Scholar 

  17. Gehrels, N., Chincarini, G., Giommi, P., et al.: The swift gamma-ray burst mission. Astrophys. J. 611, 1005 (2004)

    Article  ADS  Google Scholar 

  18. Greiner, J., Bornemann, W., Clemens, C., et al.: GROND—a 7-channel imager. Publ. Astron. Soc. Pac. 120, 405 (2008)

    Article  ADS  Google Scholar 

  19. Greiner, J., Iyudin, A., Kanbach, G., et al.: Gamma-ray burst investigation via polarimetry and spectroscopy (GRIPS). Exp. Astron. 23, 91 (2009)

    Article  ADS  Google Scholar 

  20. Greiner, J., Krühler, T., Klose, S., et al.: The nature of ‘dark’ gamma-ray bursts. Astron. Astrophys. 526, A30 (2010)

    Article  Google Scholar 

  21. Hammer, N.J., Janka, H., Müller, E.: Three-dimensional simulations of mixing instabilities in supernova explosions. Astrophys. J. 714, 1371 (2010)

    Article  ADS  Google Scholar 

  22. Hooper, D., Ferrer, F., Boehm, C., et al.: Possible evidence for MeV dark matter in dwarf spheroidals. Phys. Rev. Lett. 93, 1302 (2004)

    Article  Google Scholar 

  23. Iyudin, A.F., Galkin, V.I., Dzhatdoev, T.A.: The possibility of observing resonance gamma-ray absorption in the spectra of active galactic nuclei. Astron. Rep. 53, 102 (2009)

    Article  ADS  Google Scholar 

  24. Kuiper, L., et al.: COMPTEL detection of pulsed gamma-ray emission from PSR B1509-58 up to at least 10 MeV. Astron. Astrophys. 351, 119 (1999)

    MathSciNet  ADS  Google Scholar 

  25. Kuiper, L., et al.: Hard X-ray timing and spectral characteristics of the energetic pulsar PSR J0205+6449 in supernova remnant 3C 58. An RXTE PCA/HEXTE and XMM-Newton view on the 0.5–250 keV band. Astron. Astrophys. 515, A34 (2010)

    Article  ADS  Google Scholar 

  26. Kuiper, L., Hermsen, W.: High-energy characteristics of the schizophrenic pulsar PSR J1846-025 in Kes 75. Multi-year RXTE and INTEGRAL observations crossing the magnetar-like outburst. Astron. Astrophys. 501, 1031 (2009)

    Article  ADS  Google Scholar 

  27. Kuiper, L., Hermsen, W., den Hartog, P.R., Collmar, W.: Discovery of luminous pulsed hard X-ray emission from anomalous X-ray pulsars 1RXS J1708-4009, 4U 0142+61, and 1E 2259+586 by INTEGRAL and RXTE. Astrophys. J. 645, 556 (2006)

    Article  ADS  Google Scholar 

  28. Krühler, T., Schady, P., Greiner, J., et al.: Photometric redshifts for gamma-ray burst afterglows from GROND and Swift/UVOT. Astron. Astrophys. 526, A153 (2010)

    Article  Google Scholar 

  29. Langer, N., Norman, C.A., de Koter, A., Vink, J.S., Cantiello, M., Yoon, S.-C.: Pair creation supernovae at low and high redshift. Astron. Astrophys. 475, L19 (2007)

    Article  ADS  Google Scholar 

  30. Limongi, M., Chieffi, A.: The Nucleosynthesis of 26Al and 60Fe in solar metallicity stars extending in mass from 11 to 120 Msolar: the hydrostatic and explosive contributions. Astrophys. J. 647, 483 (2006)

    Article  ADS  Google Scholar 

  31. Marion, G.H., Höflich, P., Vacca, W.D., Wheeler, J.C.: Near-infrared spectra of type Ia supernovae. Astrophys. J. 591, 316 (2003)

    Article  ADS  Google Scholar 

  32. Naoz, S., Bromberg, O.: Naoz & Bromberg: an observational limit on the earliest gamma-ray bursts. Mon. Not. R. Astron. Soc. 380, 757 (2007)

    Article  ADS  Google Scholar 

  33. Paciesas, W.S., Meegan, C.A., Pendleton, G.N., et al.: The fourth BATSE gamma-ray burst catalog. Astrophys. J. Suppl. 122, 465 (1999)

    Article  ADS  Google Scholar 

  34. Petrosian, V., Jiang, Y.W., Liu, S., Ho, G.C., Mason, G.M.: Relative distributions of fluences of 3He and 4He in solar energetic particles. Astrophys. J. 701, 1 (2009)

    Article  ADS  Google Scholar 

  35. Pilia, M., et al.: AGILE observations of the “Soft” gamma-ray pulsar PSR B1509-58. Astrophys. J. 723, 707 (2010)

    Article  ADS  Google Scholar 

  36. Prantzos, N., Boehm, C., Bykov, A.M., et al.: Prantzos: the 511 keV emission from positron annihilation in the galaxy. Rev. Mod. Phys. arXiv:1009.4620 (2011, in press)

  37. Predehl, P., Andritschke, R., Böhringer, H., et al.: eROSITA on SRG. SPIE 7732E, 23 (2010)

    ADS  Google Scholar 

  38. Ramaty, R.: Interstellar gamma-ray lines from low energy cosmic ray interactions. Astron. Astrophys. Suppl. 120, 373 (1996)

    Article  ADS  Google Scholar 

  39. Romani, R.W., Watters, K.P.: Constraining pulsar magnetosphere geometry with γ-ray light curves. Astrophys. J. 714, 810 (2010)

    Article  ADS  Google Scholar 

  40. Salvaterra, R., Della Valle, M., Campana, S., et al.: GRB090423 at a redshift of z~8.1. Nature 461, 1258 (2009)

    Article  ADS  Google Scholar 

  41. Sim, S.A., Mazzali, P.A.: On the γ-ray emission of type Ia supernovae. Mon. Not. R. Astron. Soc. 385, 1681 (2008)

    Article  ADS  Google Scholar 

  42. Summa, A., Elsässer, D., Mannheim, K.: Nuclear de-excitation line spectrum of Cassiopeia A. Astron. Astrophys. 533, A13 (2011)

    Article  ADS  Google Scholar 

  43. Tanvir, N.R., Fox, D.B., Levan, A.J., et al.: A γ-ray burst at a redshift of z~8.2. Nature 461, 1254 (2009)

    Article  ADS  Google Scholar 

  44. Tibolla, O., Mannheim, K., Paravac, A., Greiner, J., Kanbach, G.: GRIPS and its strong connections to the GeV and TeV bands. In: Proc. of “Gamma-ray Astrophysics in the Multimessenger Context”. Il Nuovo Cim. C 034(3), 41 (2011)

  45. Watters, K.P., Romani, R.W., Weltevrede, P., Johnston, S.: An atlas for interpreting γ-ray pulsar light curves. Astrophys. J. 695, 1289 (2009)

    Article  ADS  Google Scholar 

  46. Zoglauer, A.: First light for the next generation of Compton and Pair telescopes. PhD thesis, TU Munich (2006)

  47. Zoglauer, A., Andritschke, R., Schopper, F.: MEGAlib the medium energy gamma-ray astronomy library. New Astron. Rev. 50(7–8), 629 (2006)

    ADS  Google Scholar 

  48. Zoglauer, A., Andritschke, R., Boggs, S., et al.: MEGAlib: simulation and data analysis for low-to-medium-energy gamma-ray telescopes. SPIE 7011E, 101 (2008)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Greiner.

Additional information

See Web-site www.grips-mission.eu for the authors’ affiliations.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greiner, J., Mannheim, K., Aharonian, F. et al. GRIPS - Gamma-Ray Imaging, Polarimetry and Spectroscopy. Exp Astron 34, 551–582 (2012). https://doi.org/10.1007/s10686-011-9255-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-011-9255-0

Keywords

Navigation