Skip to main content
Log in

IMPALAS: Investigation of MagnetoPause Activity using Longitudinally-Aligned Satellites—a mission concept proposed for the ESA M3 2020/2022 launch

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

The dayside magnetopause is the primary site of energy transfer from the solar wind into the magnetosphere, and modulates the activity observed within the magnetosphere itself. Specific plasma processes operating on the magnetopause include magnetic reconnection, generation of boundary waves, propagation of pressure-pulse induced deformations of the boundary, formation of boundary layers and generation of Alfvén waves and field-aligned current systems connecting the boundary to the inner magnetosphere and ionosphere. However, many of the details of these processes are not fully understood. For example, magnetic reconnection occurs sporadically, producing flux transfer events, but how and where these arise, and their importance to the global dynamics of the magnetospheric system remain unresolved. Many of these phenomena involve propagation across the magnetopause surface. Measurements at widely-spaced (Δ ∼ 5 RE) intervals along the direction of dayside terrestrial field lines at the magnetopause would be decisive in resolving these issues. We describe a mission carrying a fields and plasmas payload (including magnetometer, ion and electron spectrometer and energetic particle telescopes) on three identical spacecraft in synchronized orbits. These provide the needed separations, with each spacecraft skimming the dayside magnetopause and continuously sampling this boundary for many hours. The orbits are phased such that (i) all three spacecraft maintain common longitude and thus sample along the same magnetopause field line; (ii) the three spacecraft reach local midday when northern European ground-based facilities also lie near local midday, enabling simultaneous sampling of magnetopause field lines and their footprints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Amm, O., Grocott, A., Lester, M., Yeoman, T.K.: Local determination of ionospheric plasma convection from coherent scatter radar data using the SECS technique. J. Geophys. Res.-Space 115, A03304 (2010). doi:10.1029/2009ja014832

    Article  ADS  Google Scholar 

  2. Angelopoulos, V.: The THEMIS mission. Space Sci. Rev. 141, 5–34 (2008). doi:10.1007/s11214-008-9336-1

    Article  ADS  Google Scholar 

  3. Chisham, G., Pinnock, M., Rodger, A.S., Villain, J.-P.: High-time resolution conjugate SuperDARN radar observations of the dayside convection response to changes in IMF. Ann. Geophys. 18, 191–201 (2000)

    Article  ADS  Google Scholar 

  4. Chisham, G., Freeman, M.P., Coleman, I.J., Pinnock, M., Hairston, M.R., Lester, M., Sofko, G.: Measuring the dayside reconnection rate during an interval of due northward interplanetary magnetic field. Ann. Geophys. 22, 4243–4258 (2004). doi:10.5194/angeo-22-4243-2004

    Article  ADS  Google Scholar 

  5. Cooling, B.M.A., Owen, C.J., Schwartz, S.J.: Role of the magnetosheath flow in determining the motion of open flux tubes. J. Geophys. Res.-Space 106(A9), 18763–18775 (2001)

    Article  ADS  Google Scholar 

  6. Cowley, S.W.H., Owen, C.J.: A simple illustrative model of open flux tube motion over the dayside magnetopause. Planet Space Sci. 37(11), 1461–1475 (1989)

    Article  ADS  Google Scholar 

  7. Dungey, J.W.: Interplanetary magnetic field and auroral zones. Phys. Rev. Lett. 6(2), 47 (1961)

    Article  ADS  Google Scholar 

  8. Fairfield, D.H.: Average and unusual locations of Earth’s magnetopause and bow shock. J. Geophys. Res. 76(28), 6700 (1971)

    Article  ADS  Google Scholar 

  9. Fuselier, S.A., Trattner, K.J., Petrinec, S.M., Owen, C.J., Reme, H.: Computing the reconnection rate at the Earth’s magnetopause using two spacecraft observations. J. Geophys. Res.-Space 110(A6), A06212 (2005). doi:10.1029/2004ja010805

    Article  ADS  Google Scholar 

  10. Gosling, J.T., Thomsen, M.F., Bame, S.J., Onsager, T.G., Russell, C.T.: The electron edge of the low latitude boundary-layer during accelerated flow events. Geophys. Res. Lett. 17(11), 1833–1836 (1990)

    Article  ADS  Google Scholar 

  11. Hasegawa, H., Retino, A., Vaivads, A., Khotyaintsev, Y., Andre, M., Nakamura, T.K.M., Teh, W.L., Sonnerup, B.U.O., Schwartz, S.J., Seki, Y., Fujimoto, M., Saito, Y., Reme, H., Canu, P.: Kelvin-Helmholtz waves at the Earth’s magnetopause: multiscale development and associated reconnection. J. Geophys. Res.-Space 114, A12207 (2009). doi:10.1029/2009ja014042

  12. Hasegawa, H., Wang, J., Dunlop, M.W., Pu, Z.Y., Zhang, Q.-H., Lavraud, B., Taylor, M.G.G.T., Constantinescu, O.D., Berchem, J., Angelopolous, V., McFadden, J.P., Frey, H.U., Panov, E.V., Volwerk, M., Bogdanova, Y.V. Geophys. Res. Lett. 37, L16101 (2010). doi:10:1029/2010GL044219

    Article  ADS  Google Scholar 

  13. Horbury, T.S., Lucek, E.A.: Size, shape, and orientation of magnetosheath mirror mode structures. J. Geophys. Res.-Space 114, A05217 (2009). doi:10.1029/2009ja014068

    Article  Google Scholar 

  14. Kuznetsova, M.M., Sibeck, D.G., Hesse, M., Wang, Y., Rastaetter, L., Toth, G., Ridley, A.: Cavities of weak magnetic field strength in the wake of FTEs: results from global magnetospheric MHD simulations. Geophys. Res. Lett. 36, L10104 (2009). doi:10.1029/2009gl037489

    Article  ADS  Google Scholar 

  15. Milan, S.E., Cowley, S.W.H., Lester, M., Wright, D.M., Slavin, J.A., Fillingim, M., Carlson, C.W., Singer, H.J.: Response of the magnetotail to changes in the open flux content of the magnetosphere. J. Geophys. Res.-Space 109(A4), A04220 (2004). doi:10.1029/2003ja010350

    Article  ADS  Google Scholar 

  16. Milan, S.E., Lester, M., Cowley, S.W.H., Oksavik, K., Brittnacher, M., Greenwald, R.A., Sofko, G., Villain, J.P.: Variations in the polar cap area during two substorm cycles. Ann. Geophys.-Germany 21(5), 1121–1140 (2003)

    ADS  Google Scholar 

  17. Nakamura, R., Retino, A., Baumjohann, W., Volwerk, M., Erkaev, N., Klecker, B., Lucek, E.A., Dandouras, I., Andre, M., Khotyaintsev, Y.: Evolution of dipolarization in the near-Earth current sheet induced by Earthward rapid flux transport. Ann. Geophys.-Germany 27(4), 1743–1754 (2009)

    ADS  Google Scholar 

  18. Nakamura, T.K.M., Fujimoto, M., Otto, A.: Structure of an MHD-scale Kelvin-Helmholtz vortex: two-dimensional two-fluid simulations including finite electron inertial effects. J. Geophys. Res.-Space 113(A9), A09204 (2008). doi:10.1029/2007ja012803

    Article  ADS  Google Scholar 

  19. Owen, C.J., Marchaudon, A., Dunlop, M.W., Fazakerley, A.N., Bosqued, J.M., Dewhurst, J.P., Fear, R.C., Fuselier, S.A., Balogh, A., Reme, H.: Cluster observations of “crater” flux transfer events at the dayside high-latitude magnetopause. J. Geophys. Res.-Space 113(A7), A07s04 (2008). doi:10.1029/2007ja012701

    Article  Google Scholar 

  20. Paschmann, G., Haerendel, G., Papamastorakis, I., Sckopke, N., Bame, S.J., Gosling, J.T., Russell, C.T.: Plasma and magnetic-field characteristics of magnetic-flux transfer events. J. Geophys. Res.-Space 87(Na4), 2159–2168 (1982)

    Article  ADS  Google Scholar 

  21. Paularena, K.I., Richardson, J.D., Kolpak, M.A., Jackson, C.R., Siscoe, G.L.: A dawn-dusk density asymmetry in Earth’s magnetosheath. J. Geophys. Res.-Space 106(A11), 25377–25394 (2001)

    Article  ADS  Google Scholar 

  22. Phan, T.D., Paschmann, G., Baumjohann, W., Sckopke, N., Luhr, H.: The magnetosheath region adjacent to the dayside magnetopause - AMPTE/IRM observations. J. Geophys. Res.-Space 99(A1), 121–141 (1994)

    Article  ADS  Google Scholar 

  23. Raeder, J.: Flux Transfer Events: 1. generation mechanism for strong southward IMF. Ann. Geophys.-Germany 24(1), 381–392 (2006)

    ADS  Google Scholar 

  24. Rijnbeek, R.P., Cowley, S.W.H., Southwood, D.J., Russell, C.T.: A survey of dayside flux-transfer events observed by Isee-1 and Isee-2 magnetometers. J. Geophys. Res.-Space 89(Na2), 786–800 (1984)

    Article  ADS  Google Scholar 

  25. Russell, C.T., Elphic, R.C.: Initial Isee magnetometer results—magnetopause observations. Space Sci. Rev. 22(6), 681–715 (1978)

    Article  ADS  Google Scholar 

  26. Russell, C.T., Elphic, R.C.: Isee observations of flux-transfer events at the dayside magnetopause. Geophys. Res. Lett. 6(1), 33–36 (1979)

    Article  ADS  Google Scholar 

  27. Schwartz, S.J., Horbury, T.S., Owen, C.J., Baumjohann, W., Nakamura, R., Canu, P., Roux, A., Sahraoui, F., Louarn, P., Sauvaud, J.-A., Pincon, J.-L., Vaivads, A., Marcucci, M.F., Anastasiadis, A., Fujimoto, M., Escoubet, C.P., Taylor. M.G.G.T., Eckersley, S., Allouis, E., Perkinson, M.-C.: Cross-scale: multi-scale coupling in space plasmas. Exp. Astron. 23, 1001–1015 (2009). doi:10.1007/s10686-008-9085-x

    Article  ADS  Google Scholar 

  28. Schwartz, S.J., Bale, S.D., Fujimoto, M., Hellinger, P., Le, G., Liu, W., Louarn, P., Mann, I., Nakamura, R., Owen, C.J., Pinçon, J.-L., Sorriso-Valvo, L., Vaivads, A., Wimmer-Schweingruber, R.F., Falkner, P., Wielders, A., Escoubet, C.P., Taylor, M., Masson, A.: Multi-scale coupling in space plasmas. Cross-scale assessment study report (ESA/SRE-2009-1), ESA, 1 Dec 2009

  29. Sibeck, D.G.: A model for the transient magnetospheric response to sudden solar-wind dynamic pressure variations. J. Geophys. Res.-Space 95(A4), 3755–3771 (1990)

    Article  ADS  Google Scholar 

  30. Sibeck, D.G., Borodkova, N.L., Schwartz, S.J., Owen, C.J., Kessel, R., Kokubun, S., Lepping, R.P., Lin, R., Luhr, H., McEntire, R.W., Meng, C.I., Mukai, T., Nemecek, Z., Parks, G., Phan, T.D., Romanov, S.A., Safrankova, J., Sauvaud, J.A., Singer, H.J., Solovyev, S.I., Szabo, A., Takahashi, K., Williams, D.J., Yumoto, K., Zastenker, G.N.: Comprehensive study of the magnetospheric response to a hot flow anomaly. J. Geophys. Res.-Space 104(A3), 4577–4593 (1999)

    Article  ADS  Google Scholar 

  31. Sibeck, D.G., Kudela, K., Mukai, T., Nemecek, Z., Safrankova, J.: Radial dependence of foreshock cavities: a case study. Ann. Geophys.-Germany 22(12), 4143–4151 (2004)

    ADS  Google Scholar 

  32. Smith, M.F., Owen, C.J.: Temperature anisotropies in a magnetospheric Fte. Geophys. Res. Lett. 19(19), 1907–1910 (1992)

    Article  ADS  Google Scholar 

  33. Smith, M.F., Rodgers, D.J.: Ion distributions at the dayside magnetopause. J. Geophys. Res.-Space 96(A7), 11617–11624 (1991)

    Article  ADS  Google Scholar 

  34. Spanswick, E., Reeves, G.D., Donovan, E., Friedel, R.H.W.: Injection region propagation outside of geosynchronous orbit. J. Geophys. Res.-Space 115, A11214 (2010). doi:10.1029/2009ja015066

    Article  ADS  Google Scholar 

  35. Thomsen, M.F., Stansberry, J.A., Bame, S.J., Fuselier, S.A., Gosling, J.T.: Ion and electron velocity distributions within flux-transfer events. J. Geophys. Res.-Space 92(A11), 12127–12136 (1987)

    Article  ADS  Google Scholar 

  36. Trattner, K.J., Mulcock, J.S., Petrinec, S.M., Fuselier, S.A.: Probing the boundary between antiparallel and component reconnection during southward interplanetary magnetic field conditions. J. Geophys. Res.-Space 112(A8), A08210 (2007). doi:10.1029/2007ja012270

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Owen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Owen, C.J., Amm, O., Bruno, R. et al. IMPALAS: Investigation of MagnetoPause Activity using Longitudinally-Aligned Satellites—a mission concept proposed for the ESA M3 2020/2022 launch. Exp Astron 33, 365–401 (2012). https://doi.org/10.1007/s10686-011-9245-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-011-9245-2

Keywords

Navigation