Skip to main content

AXIOM: advanced X-ray imaging of the magnetosphere

Abstract

Planetary plasma and magnetic field environments can be studied in two complementary ways—by in situ measurements, or by remote sensing. While the former provide precise information about plasma behaviour, instabilities and dynamics on local scales, the latter offers the global view necessary to understand the overall interaction of the magnetospheric plasma with the solar wind. Some parts of the Earth’s magnetosphere have been remotely sensed, but the majority remains unexplored by this type of measurements. Here we propose a novel and more elegant approach employing remote X-ray imaging techniques, which are now possible thanks to the relatively recent discovery of solar wind charge exchange X-ray emissions in the vicinity of the Earth’s magnetosphere. In this article we describe how an appropriately designed and located X-ray telescope, supported by simultaneous in situ measurements of the solar wind, can be used to image the dayside magnetosphere, magnetosheath and bow shock, with a temporal and spatial resolution sufficient to address several key outstanding questions concerning how the solar wind interacts with the Earth’s magnetosphere on a global level. Global images of the dayside magnetospheric boundaries require vantage points well outside the magnetosphere. Our studies have led us to propose ‘AXIOM: Advanced X-ray Imaging of the Magnetosphere’, a concept mission using a Vega launcher with a LISA Pathfinder-type Propulsion Module to place the spacecraft in a Lissajous orbit around the Earth–Moon L1 point. The model payload consists of an X-ray Wide Field Imager, capable of both imaging and spectroscopy, and an in situ plasma and magnetic field measurement package. This package comprises a Proton-Alpha Sensor, designed to measure the bulk properties of the solar wind, an Ion Composition Analyser, to characterise the minor ion populations in the solar wind that cause charge exchange emission, and a Magnetometer, designed to measure the strength and direction of the solar wind magnetic field. We also show simulations that demonstrate how the proposed X-ray telescope design is capable of imaging the predicted emission from the dayside magnetosphere with the sensitivity and cadence required to achieve the science goals of the mission.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Notes

  1. 1.

    http://www.photonis.com

  2. 2.

    http://www.e2v.com

  3. 3.

    http://www.mpe.de/panter/about_en.html

  4. 4.

    http://www.iachec.org

References

  1. 1.

    Aguilar-Rodriguez, E., Blanco-Cano, X., Gopalswamy, N.: Composition and magnetic structure of interplanetary coronal mass ejections at 1 AU. Adv. Space Res. 38, 522–527 (2006)

    ADS  Article  Google Scholar 

  2. 2.

    Bodewits, D., Christian, D.J., Torney, M., Dryer, M., Lisse, C.M., Dennerl, K., Zurbuchen, T.H., Wolk, S.J., Tielens, A.G.G.M., Hoekstra, R.: Spectral analysis of the Chandra comet survey. Astron. Astrophys. 469, 1183–1195 (2007)

    ADS  Article  Google Scholar 

  3. 3.

    Brandt, P.C., Mitchell, D.G., Ebihara, Y., Sandel, B.R., Roelof, E.C., Burch, J.L., Demajistre, R.: Global IMAGE//HENA observations of the ring current: examples of rapid response to IMF and ring current-plasmasphere interaction. J. Geophys. Res. 107, 1359–1370 (2002)

    Article  Google Scholar 

  4. 4.

    Cai, C.L., Dandouras, I., Rème H., Cao, J.B., Zhou, G.C., Shen, C., Parks, G.K., Fontaine, D.: Magnetosheath excursion and the relevant transport process at the magnetopause. Ann. Geophys. 27, 2997–3005 (2009)

    ADS  Article  Google Scholar 

  5. 5.

    Carter, J.A., Sembay, S., Read, A.M.: A high charge state coronal mass ejection seen through solar wind charge exchange emission as detected by XMM-Newton. Mon. Not. R. Astron. Soc. 402, 867–878 (2010)

    ADS  Article  Google Scholar 

  6. 6.

    Carter, J.A., Sembay, S., Read, A.M.: Identifying XMM-Newton observations affected by solar wind charge exchange – part II. Astron. Astrophys. 527, 115–130 (2011)

    ADS  Article  Google Scholar 

  7. 7.

    Cravens, T.E.: Comet Hayakutake X-ray source: charge transfer of solar wind heavy ions. Geophys. Res. Lett. 24, 105–108 (1997)

    ADS  Article  Google Scholar 

  8. 8.

    Dennerl, K.: Charge transfer reactions. Space Sci. Rev. 157, 57–91 (2010)

    ADS  Article  Google Scholar 

  9. 9.

    Dennerl, K.: High resolution X-ray spectroscopy of comets. In: Proceedings of the ‘High resolution X-ray spectroscopy workshop’. Mullard Space Science Laboratory, 19–20 March 2009. (http://www.mssl.ucl.ac.uk/~gbr/workshop3/papers/comets_mssl_2009_kd.pdf)

  10. 10.

    Dunlop, M.W., Taylor, M.G.G.T., Bogdanova, Y.V., Shen, C., Pitout, F., Pu, Z., Davies, J.A., and other 12 authors: Electron structure of the magnetopause boundary layer: cluster/double star observations. J. Geophys. Res. 113, A07S19–A07S39 (2008)

    Article  Google Scholar 

  11. 11.

    Ezoe, Y., Ebisawa, K., Yamasaki, N.Y., Mitsuda, K., Yoshitake, H., Terada, N., Miyoshi, Y., Fujimoto, R.: Time variability of the geocoronal solar-wind charge exchange in the direction of the celestial equator. Publ. Astron. Soc. Jpn. 62, 981–986 (2010)

    ADS  Google Scholar 

  12. 12.

    Fairfield, D.H.: Average and unusual locations for the earth’s magnetopause and bow shock. J. Geophys. Res. 76, 6700–6716 (1971)

    ADS  Article  Google Scholar 

  13. 13.

    Fairfield, D.H., Cairns, I.H., Desch, M.D., Szabo, A., Lazarus, A.J., Aellig, M.R.: The location of low Mach number bow shocks at earth. J. Geophys. Res. 106, 25361–25376 (2001)

    ADS  Article  Google Scholar 

  14. 14.

    Farris, M.H., Petrinec, S.M., Russell, C.T.: The thickness of the magnetosheath - constraints on the polytropic index. Geophys. Res. Lett. 18, 1821–1824 (1991)

    ADS  Article  Google Scholar 

  15. 15.

    Fritz, T.A., Zong, Q.G.: The magnetospheric cusps: a summary. Surv. Geophys. 26, 409–414 (2005)

    ADS  Article  Google Scholar 

  16. 16.

    Fujimoto, R., Mitsuda, K., McCammon, D., Takei, Y., Bauer, M., Ishisaki, Y., Porter, F.S., Yamaguchi, H., Hayashida, K., Yamasaki, N.Y.: Evidence for solar-wind charge-exchange X-ray emission from the earth’s magnetosheath. Publ. Astron. Soc. Jpn. 59, S133–S140 (2007)

    ADS  Google Scholar 

  17. 17.

    Fuselier, S.A., Funsten, H.O., Heirtzler, D., Janzen, P., Kucharek, H., McComas, D.J., Möbius, E., and other 6 authors: Energetic neutral atoms from the earth’s subsolar magnetopause. Geophys. Res. Lett. 37, 13101–13105 (2010)

    ADS  Article  Google Scholar 

  18. 18.

    Green, J.L., Reinisch, B.W.: An overview of results from RPI on IMAGE. Space Sci. Rev. 109, 183–210 (2003)

    ADS  Article  Google Scholar 

  19. 19.

    Hsieh, K.C., Shih, K.L., Jokipii, J.R., Grzedzielski, S.: Probing the heliosphere with energetic hydrogen atoms. Astrophys. J. 393, 756–763 (1992)

    ADS  Article  Google Scholar 

  20. 20.

    Hudson, M.K., Kress, B.T., Mazur, J.E., Perry, K.L., Slocum, P.L.: 3D modeling of shockinduced trapping of solar energetic particles in the Earth’s magnetosphere. J. Atmos. Sol.-Terr. Phys. 66, 1389–1397 (2004)

    ADS  Article  Google Scholar 

  21. 21.

    Kuntz, K.D., Snowden, S.L.: The EPIC-MOS particle-induced background spectra. Astron. Astrophys. 478, 575–596 (2008)

    ADS  Article  Google Scholar 

  22. 22.

    Lisse, C.M., and 11 co-authors: Discovery of X-ray and extreme ultraviolet emission from comet C/Hyakutake. Science 274, 205–209 (1996)

    ADS  Article  Google Scholar 

  23. 23.

    Lucek, E.A., Constantinescu, D., Goldstein, M.L., Pickett, J., Pincon, J.L., Sahraoui, F., Treumann, R.A., Walker, S.N.: The magnetosheath. Space Sci. Rev. 118, 95–152 (2005)

    ADS  Article  Google Scholar 

  24. 24.

    Lucek, E.A., Horbury, T.S., Dandouras, I., Rème, H.: Cluster observations of the Earth’s quasi-parallel bow shock. J. Geophys. Res. 113, A07S02–A07S12 (2008)

    ADS  Article  Google Scholar 

  25. 25.

    Lumb, D.H., Warwick, R.S., Page, M., De Luca, A.: X-ray background measurements with XMM-Newton EPIC. Astron. Astrophys. 389, 93–105 (2002)

    ADS  Article  Google Scholar 

  26. 26.

    Mariani, F., Bavassano, B., Villante, U., Ness, N.F.: Variations of the occurrence rate of discontinuities in the interplanetary magnetic field. J. Geophys. Res. 78, 8011–8022 (1973)

    ADS  Article  Google Scholar 

  27. 27.

    Milan, S.E., Lester, M., Cowley, S.W.H., Oksavik, K., Brittnacher, M., Greenwald, R.A., Sofko, G., Villain, J.-P.: Variations in the polar cap area during two substorm cycles. Ann. Geophys. 21, 1121–1140 (2003)

    ADS  Article  Google Scholar 

  28. 28.

    Mitchell, D.G., Brandt, P.C., Roelof, E.C., Hamilton, D.C., Retterer, K.C., Mende, S.: Global imaging of O+ from IMAGE/HENA. Space Sci. Rev. 109, 63–75 (2003)

    ADS  Article  Google Scholar 

  29. 29.

    Østgaard, N., Mende, S.B., Frey, H.U., Gladstone, G.R., Lauche, H.: Neutral hydrogen density profiles derived from geocoronal imaging. J. Geophys. Res. 108, 1300 (2003)

    Article  Google Scholar 

  30. 30.

    Petrinec, S.P., Song, P., Russell, C.T.: Solar cycle variations in the size and shape of the magnetopause. J. Geophys. Res. 96, 7893–7896 (1991)

    ADS  Article  Google Scholar 

  31. 31.

    Rijnbeek, R.P., Cowley, S.W.H., Southwood, D.J., Russell, C.T.: A survey of dayside flux transfer events observed by ISEE 1 and 2 magnetometers. J. Geophys. Res. 89, 786–800 (1984)

    ADS  Article  Google Scholar 

  32. 32.

    Robertson, I.P., Cravens, T.E.: X-ray emission from the terrestrial magnetosheath. Geophys. Res. Lett. 30(8), 1439–1442 (2003a)

    ADS  Article  Google Scholar 

  33. 33.

    Robertson, I.P., Cravens, T.E.: Spatial maps of heliospheric and geocoronal X-ray intensities due to the charge exchange of the solar wind with neutrals. J. Geophys. Res. 108(A10), 8031–8040 (2003b)

    Article  Google Scholar 

  34. 34.

    Robertson, I.P., Collier, M.R., Cravens, T.E., Fok, M.-C.: X-ray emission from the terrestrial magnetosheath including the cusps. J. Geophys. Res. 111, A12105–A12112 (2006)

    Article  Google Scholar 

  35. 35.

    Roelof, E.C.: Remote sensing of the ring current using energetic neutral atoms. Adv. Space Res. 9, 195–203 (1989)

    ADS  Article  Google Scholar 

  36. 36.

    Roelof, E.C., Sibeck, D.G.: Erratum: Magnetopause shape as a bivariate function of interplanetary magnetic field Bz and solar wind dynamic pressure. J. Geophys. Res. 99, 8787–8788 (1994)

    ADS  Article  Google Scholar 

  37. 37.

    Russell, C.T., Elphic, R.C.: Initial ISEE magnetometer results – magnetopause observations. Space Sci. Rev. 22, 681–715 (1978)

    ADS  Article  Google Scholar 

  38. 38.

    Sandel, B.R., Goldstein, J., Gallagher, D.L., Spasojevic, M.: Extreme ultraviolet imager observations of the structure and dynamics of the plasmasphere. Space Sci. Rev. 109, 25–46 (2003)

    ADS  Article  Google Scholar 

  39. 39.

    Snowden, S.L., Collier, M.R., Kuntz, K.D.: XMM-Newton observation of solar wind charge exchange emission. Astrophys. J. 610, 1182–1190 (2004)

    ADS  Article  Google Scholar 

  40. 40.

    Snowden, S.L., Collier, M.R., Cravens, T., Kuntz, K.D., Lepri, S.T., Robertson, I., Tomas, L.: Observation of solar wind charge exchange emission from exospheric material in and outside Earth’s magnetosheath 2008 September 25. Astrophys. J. 691, 372–381 (2009)

    ADS  Article  Google Scholar 

  41. 41.

    Strüder, L., and 57 co-authors: The European photon imaging camera on XMM-Newton: the pn-CCD camera. Astron. Astrophys. 365, L18–L26 (2001)

    Article  Google Scholar 

  42. 42.

    Vallat, C., and 11 co-authors: First comparisons of local ion measurements in the inner magnetosphere with energetic neutral atom magnetospheric image inversions: cluster-CIS and IMAGE-HENA observations. J. Geophys. Res. 109, A04213–A04222 (2004)

    Article  Google Scholar 

  43. 43.

    Wang, Y.L., Raeder, J., Russell, C.: Plasma depletion layer: its dependence on solar wind conditions and the earth dipole tilt. Ann. Geophys. 22, 4273–4290 (2004)

    ADS  Article  Google Scholar 

  44. 44.

    Wargelin, B.J., Markevitch, M., Juda, M., Kharchenko, V., Edgar, R., Dalgarno, A.: Chandra observations of the dark moon and geocoronal solar wind charge transfer. Astrophys. J. 607, 596–610 (2004)

    ADS  Article  Google Scholar 

  45. 45.

    Young, D.T., and 29 co-authors: Plasma experiment for planetary exploration (PEPE). Space Sci. Rev. 129, 327–357 (2007)

    ADS  Article  Google Scholar 

  46. 46.

    Zong, Q.-G., Zhang, H., Fu, S.Y., Wang, Y.F., Pu, Z.Y., Korth, A., Daly, P.W., Fritz, T.A.: Ionospheric oxygen ions dominant bursty bulk flows: cluster and double star observations. J. Geophys. Res. 113, A01210–A01220 (2008)

    Article  Google Scholar 

Download references

Acknowledgement

We thank Rafael Guerra Paz for creating the AXIOM logo, and the anonymous referee for suggestions that have helped clarify and add content to the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Graziella Branduardi-Raymont.

Additional information

For up-to-date news of the AXIOM mission study see http://www.mssl.ucl.ac.uk/~gbr/AXIOM/.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Branduardi-Raymont, G., Sembay, S.F., Eastwood, J.P. et al. AXIOM: advanced X-ray imaging of the magnetosphere. Exp Astron 33, 403–443 (2012). https://doi.org/10.1007/s10686-011-9239-0

Download citation

Keywords

  • X-rays
  • Space telescope
  • Space plasma instrumentation
  • Magnetometer
  • Techniques
  • Imaging
  • Spectroscopy
  • Plasma and field analysers