Skip to main content
Log in

POLARIX: a pathfinder mission of X-ray polarimetry

  • Original Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

Since the birth of X-ray astronomy, spectral, spatial and timing observation improved dramatically, procuring a wealth of information on the majority of the classes of the celestial sources. Polarimetry, instead, remained basically unprobed. X-ray polarimetry promises to provide additional information procuring two new observable quantities, the degree and the angle of polarization. Polarization from celestial X-ray sources may derive from emission mechanisms themselves such as cyclotron, synchrotron and non-thermal bremsstrahlung, from scattering in aspheric accreting plasmas, such as disks, blobs and columns and from the presence of extreme magnetic field by means of vacuum polarization and birefringence. Matter in strong gravity fields and Quantum Gravity effects can be studied by X-ray polarimetry, too. POLARIX is a mission dedicated to X-ray polarimetry. It exploits the polarimetric response of a Gas Pixel Detector, combined with position sensitivity, that, at the focus of a telescope, results in a huge increase of sensitivity. The heart of the detector is an Application-Specific Integrated Circuit (ASIC) chip with 105,600 pixels each one containing a full complete electronic chain to image the track produced by the photoelectron. Three Gas Pixel Detectors are coupled with three X-ray optics which are the heritage of JET-X mission. A filter wheel hosting calibration sources unpolarized and polarized is dedicated to each detector for periodic on-ground and in-flight calibration. POLARIX will measure time resolved X-ray polarization with an angular resolution of about 20 arcsec in a field of view of 15 × 15 arcmin and with an energy resolution of 20% at 6 keV. The Minimum Detectable Polarization is 12% for a source having a flux of 1 mCrab and 105 s of observing time. The satellite will be placed in an equatorial orbit of 505 km of altitude by a Vega launcher. The telemetry down-link station will be Malindi. The pointing of POLARIX satellite will be gyroless and it will perform a double pointing during the earth occultation of one source, so maximizing the scientific return. POLARIX data are for 75% open to the community while 25% + SVP (Science Verification Phase, 1 month of operation) is dedicated to a core program activity open to the contribution of associated scientists. The planned duration of the mission is one year plus three months of commissioning and SVP, suitable to perform most of the basic science within the reach of this instrument. A nice to have idea is to use the same existing mandrels to build two additional telescopes of iridium with carbon coating plus two more detectors. The effective area in this case would be almost doubled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Novick, R., Weisskopf, M.C., Berthelsdorf, R., Linke, R., Wolff, R.S.: Detection of X-Ray polarization of the Crab Nebula. ApJ 174, L1 (1972)

    Article  ADS  Google Scholar 

  2. Weisskopf, M.C., Cohen, G.G., Kestenbaum, H.L., Long, K.S., Novick, R., Wolff, R.S.: Measurement of the X-ray polarization of the Crab Nebula. ApJ 208, L125 (1976)

    Article  ADS  Google Scholar 

  3. Weisskopf, M.C., Silver, E.H., Kestenbaum, H.L., Long, K.S., Novick, R.: A precision measurement of the X-ray polarization of the Crab Nebula without pulsar contamination. ApJ 220, L117 (1978). doi:10.1086/182648

    Article  ADS  Google Scholar 

  4. Hughes, J.P., Long, K.S., Novick, R.: A search for X-ray polarization in cosmic X-ray sources. ApJ 280, 255 (1984). doi:10.1086/161992

    Article  ADS  Google Scholar 

  5. Long, K.S., Chanan, G.A., Ku, W., Novick, R.: The linear X-ray polarization of Scorpius X-1. ApJ 232, L107–L110 (1979). doi:10.1086/183045

    Article  ADS  Google Scholar 

  6. Coburn, W., Boggs, S.E.: Polarization of the prompt γ-ray emission from the γ-ray burst of 6 December 2002. Nature 423, 415–417 (2003). doi:10.1038/nature01612

    Article  ADS  Google Scholar 

  7. Wigger, C., Hajdas, W., Arzner, K., Güdel, M., Zehnder, A.: Polarization from GRB021206: no constraints from reanalysis of RHESSI data. Nuovo Cimento C Geophysics Space Physics C 28, 265–270 (2005). doi:10.1393/ncc/i2005-10036-2

    ADS  Google Scholar 

  8. Dean, A.J., Clark, D.J., Stephen, J.B., McBride, V.A., Bassani, L., Bazzano, A., Bird, A.J., Hill, A.B., Shaw, S.E., Ubertini, P.: Polarized gamma-ray emission from the Crab. Science 321, 1183 (2008). doi:10.1126/science.1149056

    Article  ADS  Google Scholar 

  9. Forot, M., Laurent, P., Grenier, I.A., Gouiffès, C., Lebrun, F.: Polarization of the Crab Pulsar and Nebula as observed by the INTEGRAL/IBIS telescope. ApJ 688, L29–L32 (2008). doi:10.1086/593974

    Article  ADS  Google Scholar 

  10. Costa, E., Soffitta, P., Bellazzini, R., Brez, A., Lumb, N., Spandre, G.: An efficient photoelectric X-ray polarimeter for the study of black holes and neutron stars. Nature 411, 662 (2001)

    Article  ADS  Google Scholar 

  11. Bellazzini, R., Spandre, G., Minuti, M., Baldini, L., Brez, A., Cavalca, F., Latronico, L., Omodei, N., Massai, M.M., Sgro’, C., Costa, E., Soffitta, P., Krummenacher, F., de Oliveira, R.: Direct reading of charge multipliers with a self-triggering CMOS analog chip with 105 k pixels at 50 μm pitch. Nucl. Instrum. Methods Phys. Res. A 566, 552 (2006). doi:10.1016/j.nima.2006.07.036

    Article  ADS  Google Scholar 

  12. The Pierre Auger Collaboration: Correlation of the highest-energy cosmic rays with nearby extragalactic objects. Science 318, 938–943 (2007). doi:10.1126/science.1151124

    Article  ADS  Google Scholar 

  13. Weisskopf, M.C., Hester, J.J., Tennant, A.F., Elsner, R.F., Schulz, N.S., Marshall, H.L., Karovska, M., Nichols, J.S., Swartz, D.A., Kolodziejczak, J.J., O’Dell, S.L.: Discovery of spatial and spectral structure in the X-ray emission from the Crab Nebula. ApJ 536, L81 (2000). doi:10.1086/312733

    Article  ADS  Google Scholar 

  14. Mirabel, I.F., Rodriguez, L.F.: A superluminal source in the galaxy. Nature 371, 46 (1994). doi:10.1038/371046a0

    Article  ADS  Google Scholar 

  15. Belloni, T., Mendez, M., King, A.R., van der Klis, M., van Paradijs, J.: An unstable central disk in the superluminal black hole X-ray binary GRS 1915+105. ApJ 479, L145 (1997). doi:10.1086/310595

    Article  ADS  Google Scholar 

  16. Orosz, J.A., Bailyn, C.D.: Optical Observations of GRO J1655-40 in quiescence. I. A precise mass for the black hole primary. ApJ 477, 876–896 (1997). doi:10.1086/303741

    Article  ADS  Google Scholar 

  17. Aharonian, F.: Relativistic jets as powerful particle accelerators and gamma-ray emitters. In: Bulletin of the American Astronomical Society, vol. 38, p. 362. American Astronomical Society (2006)

  18. Nagae, O., Kawabata, K.S., Fukazawa, Y., Okazaki, A., Isogai, M.: Optical spectropolarimetry of three microquasars, Cyg X-1, LS 5039, LS I +61d 303. In: Yuan, Y.F., Li, X.D., Lai, D. (eds.) Astrophysics of Compact Objects. American Institute of Physics Conference Series, vol. 968, pp. 328–330 (2008). doi:10.1063/1.2840421

  19. Mirabel, I.F.: Black holes: from stars to galaxies. In: Karas, V., Matt, G. (eds.) IAU Symposium, vol. 238, pp. 309–314 (2007). doi:10.1017/S1743921307005224

  20. Celotti, A., Matt, G.: Polarization properties of synchrotron self-compton emission. MNRAS 268, 451 (1994)

    ADS  Google Scholar 

  21. Begelman, M.C., Sikora, M.: Inverse Compton scattering of ambient radiation by a cold relativistic jet—a source of beamed, polarized continuum in blazars? ApJ 322, 650–661 (1987). doi:10.1086/165760

    Article  ADS  Google Scholar 

  22. Poutanen, J.: Relativistic jets in blazars: polarization of radiation. Apj 92, 607–609 (1994). doi:10.1086/192024

    Article  ADS  Google Scholar 

  23. Grandi, P., Palumbo, G.G.C.: Jet and accretion-disk emission untangled in 3C 273. Science 306, 998–1002 (2004). doi:10.1126/science.1101787

    Article  ADS  Google Scholar 

  24. Grandi, P., Palumbo, G.G.C.: Broad-line radio galaxies: jet contribution to the nuclear X-ray continuum. ApJ 659, 235–240 (2007). doi:10.1086/510769

    Article  ADS  Google Scholar 

  25. Warner, B.: Cataclysmic Variable Stars (1995)

  26. Matt, G.: X-ray polarization properties of the accretion column in magnetic CVs. AAP 423, 495–500 (2004). doi:10.1051/0004-6361:20035649

    ADS  Google Scholar 

  27. McNamara, A.L., Kuncic, Z., Wu, K.: X-ray polarization signatures of Compton scattering in magnetic cataclysmic variables. MNRAS 386, 2167–2172 (2008). doi:10.1111/j.1365-2966.2008.13174.x

    Article  ADS  Google Scholar 

  28. Viironen, K., Poutanen, J.: Light curves and polarization of accretion- and nuclear-powered millisecond pulsars. AAP 426, 985–997 (2004). doi:10.1051/0004-6361:20041084

    ADS  Google Scholar 

  29. Meszaros, P., Novick, R., Szentgyorgyi, A., Chanan, G.A., Weisskopf, M.C.: Astrophysical implications and observational prospects of X-ray polarimetry. ApJ 324, 1056 (1988). doi:10.1086/165962

    Article  ADS  Google Scholar 

  30. Haardt, F., Matt, G.: X-ray polarization in the two-phase model for AGN and X-ray binaries. MNRAS 261, 346–352 (1993)

    ADS  Google Scholar 

  31. Poutanen, J., Vilhu, O.: Compton scattering of polarized light in two-phase accretion discs. AAP 275, 337–344 (1993)

    ADS  Google Scholar 

  32. Matt, G., Costa, E., Perola, G.C., Piro, L.: X-ray polarization of the reprocessed emission from accretion disk in Seyfert galaxies. In: Hunt, J., Battrick, B. (eds.) Two Topics in X-Ray Astronomy. Volume 1: X Ray Binaries. Volume 2: AGN and the X Ray Background, vol. 296, pp. 991–993. ESA Special Publication (1989)

  33. Antonucci, R.: Unified models for active galactic nuclei and quasars. ARAA 31, 473–521 (1993). doi:10.1146/annurev.aa.31.090193.002353

    ADS  Google Scholar 

  34. Urry, C.M., Padovani, P.: Unified schemes for radio-loud active galactic nuclei. PASP 107, 803–845 (1995). doi:10.1086/133630

    Article  ADS  Google Scholar 

  35. Sunyaev, R.A., Markevitch, M., Pavlinsky, M.: The center of the galaxy in the recent past—a view from GRANAT. ApJ 407, 606–610 (1993). doi:10.1086/172542

    Article  ADS  Google Scholar 

  36. Koyama, K., Maeda, Y., Sonobe, T., Takeshima, T., Tanaka, Y., Yamauchi, S.: ASCA view of our galactic center: remains of past activities in X-rays? PASJ 48, 249–255 (1996)

    ADS  Google Scholar 

  37. Churazov, E., Sunyaev, R., Sazonov, S.: Polarization of X-ray emission from the Sgr B2 cloud. MNRAS 330, 817–820 (2002). doi:10.1046/j.1365-8711.2002.05113.x

    Article  ADS  Google Scholar 

  38. Koyama, K., Inui, T., Matsumoto, H., Tsuru, T.G.: A time-variable x-ray echo: indications of a past flare of the galactic-center black hole. PASJ 60, 201–206 (2008)

    Google Scholar 

  39. Muno, M.P., Baganoff, F.K., Brandt, W.N., Park, S., Morris, M.R.: Discovery of variable iron fluorescence from reflection nebulae in the galactic center. ApJ 656, L69–L72 (2007). doi:10.1086/512236

    Article  ADS  Google Scholar 

  40. Heisemberg, W., Euler, H.: Zeischrift fur Physik 98, 714 (1936)

    Article  ADS  Google Scholar 

  41. van Adelsberg, M., Lai, D.: Atmosphere models of magnetized neutron stars: QED effects, radiation spectra and polarization signals. MNRAS 373, 1495–1522 (2006). doi:10.1111/j.1365-2966.2006.11098.x

    Article  ADS  Google Scholar 

  42. Stark, R.F., Connors, P.A.: Observational test for the existence of a rotating black hole in CYG X-1. Nature 266, 429 (1977)

    Article  ADS  Google Scholar 

  43. Connors, P.A., Stark, R.F., Piran, T.: Polarization features of X-ray radiation emitted near black holes. ApJ 235, 224 (1980). doi:10.1086/157627

    Article  ADS  Google Scholar 

  44. Dovčiak, M., Muleri, F., Goosmann, R.W., Karas, V., Matt, G.: Thermal disc emission from a rotating black hole: X-ray polarization signatures. MNRAS 391, 32–38 (2008). doi:10.1111/j.1365-2966.2008.13872.x

    Article  ADS  Google Scholar 

  45. Li, L., Narayan, R., McClintock, J.E.: Inferring the inclination of a Black hole accretion disk from observations of its polarized continuum radiation. ApJ 691, 847–865 (2009). doi:10.1088/0004-637X/691/1/847

    Article  ADS  Google Scholar 

  46. Schnittman, J.D., Krolik, J.H.: X-ray polarization from accreting black holes: the thermal state. ApJ 701, 1175–1187 (2009). doi:10.1088/0004-637X/701/2/1175

    Article  ADS  Google Scholar 

  47. Fabian, A.C., Iwasawa, K., Reynolds, C.S., Young, A.J.: Broad iron lines in active galactic nuclei. PASP 112, 1145–1161 (2000). doi:10.1086/316610

    Article  ADS  Google Scholar 

  48. Miniutti, G., Fabian, A.C.: A light bending model for the X-ray temporal and spectral properties of accreting black holes. MNRAS 349, 1435–1448 (2004). doi:10.1111/j.1365-2966.2004.07611.x

    Article  ADS  Google Scholar 

  49. Dovčiak, M., Karas, V., Matt, G.: Polarization signatures of strong gravity in active galactic nuclei accretion discs. MNRAS 355, 1005–1009 (2004). doi:10.1111/j.1365-2966.2004.08396.x

    Article  ADS  Google Scholar 

  50. Amelino-Camelia, G.: Phenomenology of Planck-scale Lorentz-symmetry test theories. New J. Phys. 6, 188 (2004). doi:10.1088/1367-2630/6/1/188

    Article  ADS  Google Scholar 

  51. Gambini, R., Pullin, J.: Nonstandard optics from quantum space-time. Phys. Rev. D 59(12), 124,021 (1999)

    Article  MathSciNet  Google Scholar 

  52. Gleiser, R.J., Kozameh, C.N.: Astrophysical limits on quantum gravity motivated birefringence. Phys. Rev. D 64(8), 083007 (2001). doi:10.1103/PhysRevD.64.083007

    Article  ADS  Google Scholar 

  53. Kaaret, P.: X-ray clues to viability of loop quantum gravity. Nature 427, 287 (2004)

    Article  ADS  Google Scholar 

  54. Fan, Y.Z., Wei, D.M., Xu, D.: γ-ray burst ultraviolet/optical afterglow polarimetry as a probe of quantum gravity. MNRAS 376, 1857–1860 (2007). doi:10.1111/j.1365-2966.2007.11576.x

    Article  ADS  Google Scholar 

  55. Maccione, L., Liberati, S., Celotti, A., Kirk, J.G., Ubertini, P.: γ-ray polarization constraints on Planck scale violations of special relativity. Phys. Rev. D 78(10), 103003 (2008). doi:10.1103/PhysRevD.78.103003

    Article  ADS  Google Scholar 

  56. Citterio, O., Campano, S., Conconi, P., Ghigo, M., Mazzoleni, F., Poretti, E., Conti, G., Cusumano, G., Sacco, B., Brauninger, H., Burkert, W., Egger, R., Castelli, C.M., Willingale, R.: Characteristics of the flight model optics for the JET-X telescope onboard the Spectrum-X-Gamma satellite. In: Hoover, R.B., Walker, A.B. (eds.) Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 2805, pp. 56–65. Society of Photo-Optical Instrumentation Engineers (SPIE) (1996)

  57. Moretti, A., Campana, S., Mineo, T., Romano, P., Abbey, A.F., Angelini, L., Beardmore, A., Burkert, W., Burrows, D.N., Capalbi, M., Chincarini, G., Citterio, O., Cusumano, G., Freyberg, M.J., Giommi, P., Goad, M.R., Godet, O., Hartner, G.D., Hill, J.E., Kennea, J., La Parola, V., Mangano, V., Morris, D., Nousek, J.A., Osborne, J., Page, K., Pagani, C., Perri, M., Tagliaferri, G., Tamburelli, F., Wells, A.: In-flight calibration of the Swift XRT point spread function. In: Siegmund, O.H.W. (ed.) Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 5898, pp. 360–368. Society of Photo-Optical Instrumentation Engineers (SPIE) (2005). doi:10.1117/12.617164

  58. Romano, P., Cusumano, G., Campana, S., Mangano, V., Moretti, A., Abbey, A.F., Angelini, L., Beardmore, A., Burrows, D.N., Capalbi, M., Chincarini, G., Citterio, O., Giommi, P., Goad, M.R., Godet, O., Hartner, G.D., Hill, J.E., Kennea, J., LaParola, V., Mineo, T., Morris, D., Nousek, J.A., Osborne, J., Page, K., Pagani, C., Perri, M., Tagliaferri, G., Tamburelli, F., Wells, A.: In-flight calibration of the SWIFT XRT effective area. In: Siegmund, O.H.W. (ed.) Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 5898, pp. 369–376. Society of Photo-Optical Instrumentation Engineers (SPIE) (2005). doi:10.1117/12.616974

  59. Bellazzini, R., Spandre, G., Minuti, M., Baldini, L., Brez, A., Latronico, L., Omodei, N., Razzano, M., Massai, M.M., Pesce-Rollins, M., Sgró, C., Costa, E., Soffitta, P., Sipila, H., Lempinen, E.: A sealed Gas Pixel Detector for X-ray astronomy. Nucl. Instrum. Methods Phys. Res. A 579, 853 (2007). doi:10.1016/j.nima.2007.05.304

    Article  ADS  Google Scholar 

  60. Muleri, F., Soffitta, P., Bellazzini, R., Brez, A., Costa, E., Fabiani, S., Frutti, M., Minuti, M., Negri, M.B., Pascale, P., Rubini, A., Sindoni, G., Spandre, G.: A very compact polarizer for an X-ray polarimeter calibration. In: Proc. SPIE, vol. 6686, p. 668610 (2007). doi:10.1117/12.734647

  61. Weisskopf, M.C., Elsner, R.F., Kaspi, V.M., O’Dell, S.L., Pavlov, G.G., Ramsey, B.D.: X-ray polarimetry and its potential use for understanding neutron stars. In: Becker, W. (ed.) Astrophysics and Space Science Library, Astrophysics and Space Science Library, vol. 357, p. 589 (2009)

  62. Weisskopf, M.C., Elsner, R.F., O’Dell, S.L.: On understanding the figures of merit for detection and measurement of x-ray polarization. ArXiv e-prints, In: Proceed. of SPIE Conference, San Diego (2010)

  63. Muleri, F., Soffitta, P., Baldini, L., Bellazzini, R., Brez, A., Costa, E., Fabiani, S., Krummenacher, F., Latronico, L., Lazzarotto, F., Minuti, M., Pinchera, M., Rubini, A., Sgró, C., Spandre, G.: Spectral and polarimetric characterization of the Gas Pixel Detector filled with dimethyl ether. Nucl. Instrum. Methods Phys. Res. A 620, 285–293 (2010)

    Article  ADS  Google Scholar 

  64. Muleri, F., Soffitta, P., Bellazzini, R., Brez, A., Costa, E., Frutti, M., Mastropietro, M., Morelli, E., Pinchera, M., Rubini, A., Spandre, G.: A versatile facility for the calibration of X-ray polarimeters with polarized radiation. In: Proc. SPIE, vol. 7011-84 (2008)

  65. Lai, D., Heyl, J.: Probing axions with radiation from magnetic stars. Phys. Rev. D 74(12), 123003 (2006). doi:10.1103/PhysRevD.74.123003

    Article  ADS  Google Scholar 

  66. Wu, K., McNamara, A., Kuncic, Z.: X-ray polarization from accreting white dwarfs and associated systems. In: Bellazzini, R., Costa, E., Matt, G., Tagliaferri, G. (eds.) X-ray Polarimetry: A New Window in Astrophysics, pp. 187–194. Cambridge University Press (2010)

  67. Matt, G., Fiore, F., Perola, G.C., Piro, L., Fink, H.H., Grandi, P., Matsuoka, M., Oliva, E., Salvati, M.: A reflection-dominated X-ray spectrum discovered by ASCA in the Circinus galaxy. MNRAS 281, L69–L73 (1996)

    ADS  Google Scholar 

  68. Reynolds C.S., Fabian A.C., Inoue H.: ASCA observations of the Seyfert 1 galaxies MRK 1040 and MS 0225.5+3121. MNRAS 276, 1311–1319 (1995)

    ADS  Google Scholar 

Download references

Acknowledgements

The first studies of POLARIX were supported by ASI contract I/088/060 for which we thank Elisabetta Cavazzuti. The phase A study was supported by ASI contract I/016/08/0 . We thank Maria Cristina Falvella, Donatella Frangipane, Elisabetta Tommasi, Simona Zoffoli, Marino Crisconio, Paolo Giommi, Francesco Longo, Fabio D’Amico, Jean Sabbagh, Giancarlo Varacalli and Valeria Catalano from ASI for the effective and cooperative effort during all the study. We also acknowledge the support of ASI contract I/012/08/0 and Maria Barbara Negri. We also acknowledge the contrbution of large teams of Thales Alenia Space Italy and of Telespazio. A special thanks to Volker Liebig, Director of Earth Observation Programmes of ESA, for considering the possibility of making available to POLARIX spare parts of the GOCE mission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Soffitta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Costa, E., Bellazzini, R., Tagliaferri, G. et al. POLARIX: a pathfinder mission of X-ray polarimetry. Exp Astron 28, 137–183 (2010). https://doi.org/10.1007/s10686-010-9194-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-010-9194-1

Keywords

Navigation