Experimental Astronomy

, 27:27 | Cite as

Advancing fundamental physics with the Laser Astrometric Test of Relativity

The LATOR mission
  • S. G. Turyshev
  • M. Shao
  • K. L. Nordtvedt
  • H. DittusEmail author
  • C. Laemmerzahl
  • S. Theil
  • C. Salomon
  • S. Reynaud
  • T. Damour
  • U. Johann
  • P. Bouyer
  • P. Touboul
  • B. Foulon
  • O. Bertolami
  • J. Páramos
Original Article


The Laser Astrometric Test of Relativity (LATOR) is an experiment designed to test the metric nature of gravitation—a fundamental postulate of the Einstein’s general theory of relativity. The key element of LATOR is a geometric redundancy provided by the long-baseline optical interferometry and interplanetary laser ranging. By using a combination of independent time-series of gravitational deflection of light in the immediate proximity to the Sun, along with measurements of the Shapiro time delay on interplanetary scales (to a precision respectively better than 0.1 picoradians and 1 cm), LATOR will significantly improve our knowledge of relativistic gravity and cosmology. The primary mission objective is i) to measure the key post-Newtonian Eddington parameter γ with accuracy of a part in 109. \(\frac{1}{2}(1-\gamma)\) is a direct measure for presence of a new interaction in gravitational theory, and, in its search, LATOR goes a factor 30,000 beyond the present best result, Cassini’s 2003 test. Other mission objectives include: ii) first measurement of gravity’s non-linear effects on light to ∼0.01% accuracy; including both the traditional Eddington β parameter and also the spatial metric’s 2nd order potential contribution (never measured before); iii) direct measurement of the solar quadrupole moment J 2 (currently unavailable) to accuracy of a part in 200 of its expected size of ≃ 10 − 7; iv) direct measurement of the “frame-dragging” effect on light due to the Sun’s rotational gravitomagnetic field, to 0.1% accuracy. LATOR’s primary measurement pushes to unprecedented accuracy the search for cosmologically relevant scalar-tensor theories of gravity by looking for a remnant scalar field in today’s solar system. We discuss the science objectives of the mission, its technology, mission and optical designs, as well as expected performance of this experiment. LATOR will lead to very robust advances in the tests of fundamental physics: this mission could discover a violation or extension of general relativity and/or reveal the presence of an additional long range interaction in the physical law. There are no analogs to LATOR; it is unique and is a natural culmination of solar system gravity experiments.


Fundamental physics Tests of general relativity Scalar-tensor theories Modified gravity Interplanetary laser ranging Optical interferometry Picometer-class metrology LATOR 


04.80.-y 95.10.Eg 95.55.Pe 



The work described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.


  1. 1.
    Anderson, J.D., Williams, J.G.: Long-range tests of the equivalence principle. Class. Quantum Gravity 18, 2447 (2001)zbMATHCrossRefADSGoogle Scholar
  2. 2.
    Anderson, J.D., Lau, E.L., Turyshev, S.G., Williams, J.G., Nieto, M.M.: Recent results for solar-system tests of general relativity. BAAS 34, 833 (2002)Google Scholar
  3. 3.
    Bean, R., Carroll, S.M., Trodden, M.: Insights into dark energy: interplay between theory and observation (2005). astro-ph/0510059
  4. 4.
    Bennett, C.L., Halpern, M., Hinshaw, G., Jarosik, N., Kogut, A., Limon, M., Meyer, S.S., Page, L., Spergel, D.N., Tucker, G.S., Wollack, E., Wright, E.L., Barnes, C., Greason, M.R., Hill, R.S., Komatsu, E., Nolta, M.R., Odegard, N., Peirs, H.V., Verde, L., Weiland, J.L., [i.e. WMAP Science Team]: First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: preliminary maps and basic results. Astrophys. J. Suppl. 148, 1 (2003). astro-ph/0302207 CrossRefADSGoogle Scholar
  5. 5.
    Bertolami, O., Páramos, J.: The pioneer anomaly in the context of the braneworld scenario. Class. Quantum Gravity 21, 3309 (2004) gr-qc/0310101 zbMATHCrossRefADSGoogle Scholar
  6. 6.
    Bertolami, O., Páramos, J.: Astrophysical constraints on scalar field models. Phys. Rev. D71, 023521 (2004). astro-ph/0408216 ADSGoogle Scholar
  7. 7.
    Bertolami, O., Páramos, J., Turyshev, S.G.: General theory of relativity: will it survive the next decade? In: Proc. 359th WE-Heraeus Seminar: Lasers, Clock, and Drag-free: Technologies for Future Exploration in Space and Gravity Tests. University of Bremen, ZARM, Bremen, Germany, 30 May–1 June 2005. “Lasers, Clocks, and Drag-Free: Exploration of Relativistic Gravity in Space.” H. Dittus, C. Laemmerzahl, S. Turyshev, editors. (Springer Verlag, 2006), pp. 27–67 (2006), gr-qc/0602016
  8. 8.
    Bertotti, B., Iess, L., Tortora, P.: A test of general relativity using radio links with the Cassini spacecraft. Nature 425, 374 (2003)CrossRefADSGoogle Scholar
  9. 9.
    de Bernardis, P., Ade, P.A.R., Bock, J.J., Bond, J.R., Borrill, J., Boscaleri, A., Coble, K., Crill, B.P., De Gasperis, G., Farese, P.C., Ferreira, P.G., Ganga, K., Giacometti, M., Hivon, E., Hristov, V.V., Iacoangeli, A., Jaffe, A.H., Lange, A.E., Martinis, L., Masi, S., Mason, P.V., Mauskopf, P.D., Melchiorri, A., Miglio, L., Montroy, T., Netterfield, C.B., Pascale, E., Piacentini, F., Pogosyan, D., Prunet, S., Rao, S., Romeo, G., Ruhl, J.E., Scaramuzzi, F., Sforna, D., Vittorio, N.: A flat universe from high-resolution maps of the cosmic microwave background radiation. Nature 404, 955 (2000)CrossRefADSGoogle Scholar
  10. 10.
    Capozziello, S., Troisi, A.: PPN-limit of fourth order gravity inspired by scalar-tensor gravity. Phys. Rev. D72, 044022 (2005). astro-ph/0507545 MathSciNetADSGoogle Scholar
  11. 11.
    Carroll S.M.: The cosmological constant. Living Rev. Rel. 4, 1 (2001). astro-ph/0004075 Google Scholar
  12. 12.
    Carroll, S.M., Hoffman, M., Trodden, M.: Can the dark energy equation-of-state parameter w be less than − 1? Phys. Rev. D68, 023509 (2003). astro-ph/0301273 ADSGoogle Scholar
  13. 13.
    Carroll, S.M., Duvvuri, V., Trodden, M., Turner, M.: Is cosmic speed-up due to new gravitational physics? Phys. Rev. D70, 043528 (2004). astro-ph/0306438 ADSGoogle Scholar
  14. 14.
    Carroll, S.M., De Felice, A., Duvvuri, V., Easson, D.A., Trodden, M., Turner M.S.: The cosmology of generalized modified gravity models (2005). astro-ph/0410031
  15. 15.
    Carroll, S.M.: Is our universe natural? (2005). hep-th/0512148
  16. 16.
    Damour, T., Nordtvedt, K.L., Jr.: General relativity as a cosmological attractor of tensor scalar theories. Phys. Rev. Lett. 70, 2217 (1993)CrossRefADSGoogle Scholar
  17. 17.
    Damour, T., Nordtvedt, K.L., Jr.: Tensor-scalar cosmological models and their relaxation toward general relativity. Phys. Rev. D48, 3436 (1993)MathSciNetADSGoogle Scholar
  18. 18.
    Damour, T., Polyakov, A.M.: String theory and gravity. Gen. Relativ. Gravit. 26, 1171 (1994)CrossRefMathSciNetADSGoogle Scholar
  19. 19.
    Damour, T., Polyakov, A.M.: The string dilaton and a least coupling principle. Nucl. Phys. B423, 532 (1994)CrossRefMathSciNetADSGoogle Scholar
  20. 20.
    Damour, T., Esposito-Farese, G.: Testing gravity to second post-Newtonian order: a field-theory approach. Phys. Rev. D53, 5541 (1996a). gr-qc/9506063 MathSciNetADSGoogle Scholar
  21. 21.
    Damour, T., Esposito-Farese, G.: Tensor-scalar gravity and binary pulsar experiments. Phys. Rev. D54, 1474 (1996b). gr-qc/9602056 MathSciNetADSGoogle Scholar
  22. 22.
    Damour, T., Esposito-Farese, G.: Gravitational-wave versus binary-pulsar tests of strong-field gravity. Phys. Rev. D58, 042001 (1998). gr-qc/9803031 ADSGoogle Scholar
  23. 23.
    Damour T., Taylor J.H.: Strong-field tests of relativistic gravity and binary pulsars. Phys. Rev. D45, 1840 (1992)ADSGoogle Scholar
  24. 24.
    Damour, T., Piazza, F., Veneziano, G.: Runaway dilaton and equivalence principle violations. Phys. Rev. Lett. 89, 081601 (2002). gr-qc/0204094 CrossRefADSGoogle Scholar
  25. 25.
    Damour, T., Piazza, F., Veneziano, G.: Violations of the equivalence principle in a dilaton-runaway scenario. Phys. Rev. D66, 046007 (2002). hep-th/0205111 MathSciNetADSGoogle Scholar
  26. 26.
    Dvali, G., Gabadadze, G., Porrati, M.: 4D gravity on a brane in 5D Minkowski space. Phys. Lett. B485, 208 (2000). hep-th/0005016 MathSciNetADSGoogle Scholar
  27. 27.
    Dvali, G., Gabadadze, G., Porrati, M.: On sub-millimeter forces from extra dimensions. Mod. Phys. Lett. A15, 1717 (2000). hep-ph/0007211 MathSciNetADSGoogle Scholar
  28. 28.
    Dvali, G., Gruzinov, A., Zaldarriaga, M.: The accelerated universe and the moon. Phys. Rev. D68, 024012 (2003). hep-ph/0212069 ADSGoogle Scholar
  29. 29.
    Halverson, N.W., Leitch E.M., Pryke C., Kovac, J., Carlstrom, J.E., Holzapfel, W.L., Dragovan, M., Cartwright, J.K., Mason, B.S., Padin, S., Pearson, T.J., Shepherd, M.C., Readhead, A.C.S.: DASI first results: a measurement of the cosmic microwave background angular power spectrum. Astrophys. J. 568, 38 (2002). astro-ph/0104489 CrossRefADSGoogle Scholar
  30. 30.
    Lange, Ch., Camilo, F., Wex, N., Kramer, M., Backer, D.C., Lyne, A.G. Doroshenko, O.: Precision timing measurements of PSR J1012+5307. Mon. Not. R. Astron. Soc. 326, 274 (2001)CrossRefADSGoogle Scholar
  31. 31.
    Lebach, D.E., Corey, B.E., Shapiro, I.I., Ratner, M.I., Webber, J.C., Rogers, A.E.E., Davis, J.L. Herring, T.A.: Measurement of the solar gravitational deflection of radio waves using very-long-baseline interferometry. Phys. Rev. Lett. 75, 1439 (1995)CrossRefADSGoogle Scholar
  32. 32.
    Netterfield, C.B., Ade, P.A.R., Bock, J.J., Bond, J.R., Borrill, J., Boscaleri, A., Coble, K., Contaldi, C.R., Crill, B.P., de Bernardis, P., Farese, P., Ganga, K., Giacometti, M., Hivon, E., Hristov, V.V., Iacoangeli, A., Jaffe, A.H., Jones, W.C., Lange, A.E., Martinis, L., Masi, S., Mason, P., Mauskopf, P.D., Melchiorri, A., Montroy, T., Pascale, E., Piacentini, F., Pogosyan, D., Pongetti, F., Prunet, S., Romeo, G., Ruhl, J.E., Scaramuzzi, F. [i.e. Boomerang Collaboration]: A measurement by BOOMERANG of multiple peaks in the angular power spectrum of the cosmic microwave background. Astrophys. J. 571, 604 (2002). astro-ph/0104460 CrossRefADSGoogle Scholar
  33. 33.
    Nordtvedt, K.L., Jr.: Probing gravity to the 2nd post-Newtonian order and to one part in 107 using the Sun. ApJ 320, 871 (1987)CrossRefADSGoogle Scholar
  34. 34.
    Nordtvedt, K.L., Jr.: Significance of ‘second-order’ light propagation experiments in the solar system. Class. Quantum Gravity 13, A11 (1996)zbMATHCrossRefADSGoogle Scholar
  35. 35.
    Nordtvedt, K.L., Jr.: Lunar laser ranging—a comprehensive probe of post-Newtonian gravity (2003). gr-qc/0301024
  36. 36.
    Peebles, P.J.E., Ratra, B.: The cosmological constant and dark energy. Rev. Mod. Phys. 75, 599 (2003). astro-ph/0207347 CrossRefMathSciNetADSGoogle Scholar
  37. 37.
    Peacock, J.A., et al.: A measurement of the cosmological mass density from clustering in the 2dF galaxy redshift survey. Nature 410, 169 (2001)CrossRefADSGoogle Scholar
  38. 38.
    Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R.A., Nugent, P., Castro, P.G., Deustua, S., Fabbro, S., Goobar, A., Groom, D.E., Hook, I.M., Kim, A.G., Kim, M.Y., Lee, J.C., Nunes, N.J., Pain, R., Pennypacker, C.R., Quimby, R., Lidman, C., Ellis, R.S., Irwin, M., McMahon, R.G., Ruiz-Lapuente, P., Walton, N., Schaefer, B., Boyle, B.J., Filippenko, A.V., Matheson, T., Fruchter, A.S., Panagia, N., Newberg, H.J.M., Couch, W.J. [i.e. Supernova Cosmology Project Collaboration]: Measurements of omega and lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999). astro-ph/9812133 CrossRefADSGoogle Scholar
  39. 39.
    Pitjeva, E.V.: Relativistic effects and solar oblateness from radar observations of planets and spacecraft. Astron. Lett. 31, 340 (2005)CrossRefADSGoogle Scholar
  40. 40.
    Plowman, J.E., Hellings, R.W.: LATOR covariance analysis. Class. Quantum Gravavity 23, 309 (2006). gr-qc/0505064 zbMATHCrossRefADSGoogle Scholar
  41. 41.
    Reasenberg, R.D., Shapiro, I.I., MacNeil, P.E., Goldstein, R.B., Breidenthal, J.C., Brenkle, J.P., Cain, D.L., Kaufman, T.M., Komarek, T.A., Zygielbaum, A.I.: Viking relativity experiment: verification of signal retardation by solar gravity. ApJ Lett. 234, L219 (1979)CrossRefADSGoogle Scholar
  42. 42.
    Robertson, D.S., Carter, W.E., Dillinger, W.H.: A new measurement of solar gravitational deflection of radio signals using VLBI. Nature 349, 768 (1991)CrossRefADSGoogle Scholar
  43. 43.
    Riess, A.G., Filippenko, A.V., Challis, P., Clocchiatti, A., Diercks, A., Garnavich, P.M., Gilliland, R.L., Hogan, C.J., Jha, S., Kirshner, R., Leibundgut, B., Phillips, M.M., Reiss, D., Schmidt, B.P., Schommer, R.A., Smith, R.C., Spyromilio, J., Stubbs, C., Suntzeff, N.B., Tonry, J.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. [i.e., Supernova Search Team Collaboration] Astron. J. 116, 1009 (1998)ADSGoogle Scholar
  44. 44.
    Shapiro, I.I., Counselman, C.C., III, King, R.W.: Verification of the principle of equivalence for massive bodies. Phys. Rev. Lett. 36, 555 (1976)CrossRefADSGoogle Scholar
  45. 45.
    Shapiro, I.I., Reasenberg, R.D., MacNeil, P.E., Goldstein, R.B., Brenkle, J.P., Cain, D.L., Komarek, T., Zygielbaum, A.I., Cuddihy, W.F., Michael, W.H., Jr.: The viking relativity experiment. JGR 82, 4329 (1977)CrossRefADSGoogle Scholar
  46. 46.
    Shapiro, S.S., Davis, J.L., Lebach, D.E., Gregory, J.S.: Measurement of the solar gravitational deflection of radioWaves using geodetic very-long-baseline interferometry data, 1979–1999. Phys. Rev. Lett. 92, 121101 (2004)CrossRefADSGoogle Scholar
  47. 47.
    Taylor, J.H., Wolszczan, A., Damour, T., Weisberg, J.M.: Experimental constraints on strong-field relativistic gravity. Nature 355, 132 (1992)CrossRefADSGoogle Scholar
  48. 48.
    Tonry, J.L., Schmidt, B.P., Barris, B., Candia, P., Challis, P., Clocchiatti, A., Coil, A.L., Filippenko, A.V., Garnavich, P., Hogan, C., Holland, S.T., Jha, S., Kirshner, R.P., Krisciunas, K., Leibundgut, B., Li, W., Matheson, T., Phillips, M.M., Riess, A.D., Schommer, R., Smith, R.C., Sollerman, J., Spyromilio, J., Stubbs, C.W., Suntzeff, N.B.: Cosmological results from high-z supernovae. Astrophys. J. 594, 1–24 (2003). astro-ph/0305008 Google Scholar
  49. 49.
    Turyshev, S.G., Shao, M., Nordtvedt, K.L., Jr.: The Laser Astrometric Test of Relativity (LATOR) mission. Class. Quantum Gravity 21, 2773 (2004). gr-qc/0311020 zbMATHCrossRefADSGoogle Scholar
  50. 50.
    Turyshev, S.G., Shao, M., Nordtvedt, K.L., Jr.: Experimental design for the LATOR mission. Int. J. Mod. Phys. D13, 2035 (2004). gr-qc/0410044 ADSGoogle Scholar
  51. 51.
    Turyshev, S.G., Shao, M., Nordtvedt, K.L., Jr.: Optical design for the Laser Astrometric Test of Relativity. In: Proc. The XXII Texas Symposium on Relativistic Astrophysics. Stanford University, 13–17 December 2004, eConf C041213 #0306 (2004). gr-qc/0502113
  52. 52.
    Turyshev, S.G., Shao, M., Nordtvedt, K.L., Jr.: Science, technology and mission design for the Laser Astrometric Test of Relativity mission. 359th WE-heraeus Seminar: Lasers, Clock, and Drag-free: Technologies for Future Exploration in Space and Gravity Tests. University of Bremen, ZARM, Bremen, Germany, 30 May–1 June 2005. In: Dittus, H., Laemmerzahl, C., Turyshev, S. (eds.) Lasers, Clocks, and Drag-free: Technologies for Future Exploration in Space and Tests of Gravity: Proceedings, pp. 429-493. Springer Verlag (2006). arXiv:gr-qc/0601035
  53. 53.
    Turyshev, S.G., Israelsson, U.E., Shao, M., Yu, N., Kusenko, A., Wright, E.L., Everitt, C.W.F., Kasevich, M., Lipa, J.A., Mester, J.C., Reasenberg, R.D., Walsworth, R.L., Ashby, N., Gould, H., Paik, H.J.: Space-based research in fundamental physics and quantum technologies. Int. J. Mod. Phys. D 16(12a), 1879–1925 (2007). arXiv:0711.0150 [gr-qc]CrossRefADSGoogle Scholar
  54. 54.
    Turyshev S. G.: Experimental tests of general relativity. Annu. Rev. Nucl. Part. Sci. 58, 207–248 (2008). arXiv:0806.1731 [gr-qc]CrossRefADSGoogle Scholar
  55. 55.
    Will, C.M.: Theory and experiment in gravitational physics. Cambridge: Cambridge University Press (1993)zbMATHGoogle Scholar
  56. 56.
    Will, C.M.: The confrontation between general relativity and experiment. Liv. Rev. Relativity 9 (2006). gr-qc/0510072
  57. 57.
    Williams, J.G., Turyshev, S.G., Boggs, D.H.: Progress in lunar laser ranging tests of relativistic gravity. Phys. Rev. Lett. 93, 261101 (2004) gr-qc/0411113 CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • S. G. Turyshev
    • 1
  • M. Shao
    • 1
  • K. L. Nordtvedt
    • 2
  • H. Dittus
    • 3
    • 4
    Email author
  • C. Laemmerzahl
    • 3
  • S. Theil
    • 4
  • C. Salomon
    • 5
  • S. Reynaud
    • 5
  • T. Damour
    • 6
  • U. Johann
    • 7
  • P. Bouyer
    • 8
  • P. Touboul
    • 9
  • B. Foulon
    • 9
  • O. Bertolami
    • 10
  • J. Páramos
    • 10
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Northwest AnalysisBozemanUSA
  3. 3.Centre of Applied Space Technology & Microgravity (ZARM)University of BremenBremenGermany
  4. 4.Institute of Space SystemsGerman Aerospace CenterBremenGermany
  5. 5.Laboratoire Kastler BrosselUniversité Pierre et Marie CurieParisFrance
  6. 6.Institut des Hautes Etudes ScientifiquesBures-sur-YvetteFrance
  7. 7.Department of Science ProgramsEarth Observation and ScienceFriedrichshafenGermany
  8. 8.Laboratoire Charles Fabry de l’Institut d’OptiqueOrsay CEDEXFrance
  9. 9.Physics and Instrumentation DepartmentONERAChatillonFrance
  10. 10.Instituto Superior TécnicoDepartamento de FísicaLisboaPortugal

Personalised recommendations