Skip to main content
Log in

The development of astronomical interferometry

  • Review Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

Astronomical interferometry was pioneered by Fizeau and Michelson in the 19th century. In the 1920s, the first stellar diameters were measured. The development of radio interferometry began in the 1950s, and led to the construction of powerful synthesis arrays operating at cm, mm, and sub-mm wavelengths. Modern computer and control technology has enabled the interferometric combination of light from separate telescopes also in the visible and infrared regimes. Imaging with milliarcsecond resolution and astrometry with microarcsecond precision have thus become reality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Anderson, J.A.: Application of Michelson’s interferometer method to the measurement of close double stars. Ap. J. 51, 263–275 (1920)

    Article  ADS  Google Scholar 

  2. Baars, J.W.M., van der Brugge, J.F., Casse, J.L., Hamaker, J.P., Sondaar, L.H., et al.: The synthesis radio telescope at Westerbork. Proc. IEEE 61, 1258–1266 (1973)

    Article  ADS  Google Scholar 

  3. Baldwin, J.E., Beckett, M.G., Boysen, R.C., Burns, D., Buscher, D.F., et al.: The first images from an optical aperture synthesis array: mapping of Capella with COAST at two epochs. A&A 306, L13–L16 (1996)

    ADS  Google Scholar 

  4. Baym, G.: The physics of Hanbury Brown-Twiss intensity interferometry: from stars to nuclear collisions. Acta Phys. Pol. B 29, 1839–1884 (1998)

    ADS  Google Scholar 

  5. Bracewell, R.N.: Detecting nonsolar planets by spinning infrared interferometer. Nature 274, 780–781 (1978)

    Article  ADS  Google Scholar 

  6. Carpenter, K.G., Schrijver, C.J., Karovska, M.: The Stellar Imager (SI) vision mission. In: Monnier, J.D., Schöller, M., Danchi, W.C. (eds.) Advances in Stellar Interferometry, vol. 6268, p. 626821. SPIE, Bellingham (2006)

    Google Scholar 

  7. Cash, W., Shipley, A., Osterman, S., Joy, M.: Laboratory detection of X-ray fringes with a grazing-incidence interferometer. Nature 407, 160–162 (2000)

    Article  ADS  Google Scholar 

  8. Cohen, M.H., Jauncey, D.L., Kellerman, K.I., Clark, B.G.: Radio inteferometry at one-thousandth second of arc. Science 162, 88–94 (1968)

    Article  ADS  Google Scholar 

  9. Colavita, M.M., Shao, M., Staelin, D.: Two-color method for optical astrometry: theory and preliminary measurements with the Mark III stellar interferometer. Appl. Opt. 26, 4113–4122 (1987)

    Article  ADS  Google Scholar 

  10. Delplancke, F.: The PRIMA facility phase-referenced imaging and micro-arcsecond astrometry. NewAR 52, 199–207 (2008)

    Article  ADS  Google Scholar 

  11. Di Benedetto, G.P., Rabbia, Y.: Accurate angular diameters and effective temperatures for eleven giants cooler than K0 by Michelson interferometry. A&A 188, 114–124 (1987)

    ADS  Google Scholar 

  12. Fizeau, H.: Prix Bordin: rapport sur le concours de l’année 1867. C. R. Acad. Sci. 66, 932–934 (1868)

    Google Scholar 

  13. Hale, D.D.S., Bester, M., Danchi, W.C., Fitelson, W., Hoss, S., et al.: The Berkeley infrared spatial interferometer: a heterodyne stellar interferometer for the mid-infrared. Ap. J. 537, 998–1012 (2000)

    Article  ADS  Google Scholar 

  14. Hanbury Brown, R., Davis, J., Allen, R.: The stellar interferometer at Narrabri Observatory I. A description of the instrument and the observational procedure. MNRAS 137, 375–392 (1967)

    ADS  Google Scholar 

  15. Hanbury Brown, R., Davis, J., Allen, R.: The angular diameters of 32 stars. MNRAS 167, 121–136 (1974)

    ADS  Google Scholar 

  16. Hanbury Brown, R., Twiss, R.Q.: A new type of interferometer for use in radio astronomy. Phil. Mag. Ser. 7, 45, 663–682 (1954)

    Google Scholar 

  17. Hanbury Brown, R., Twiss, R.Q.: A test of a new type of stellar interferometer on Sirius. Nature 178, 1046–1048 (1956)

    Article  ADS  Google Scholar 

  18. Hirabayashi, H., Hirosawa, H., Kobayashi, H., et al.: The VLBI space observatory programme and the radio-astronomical satellite HALCA. PASJ 52, 955–965 (2000)

    ADS  Google Scholar 

  19. Hummel, C.A., Armstrong, J.T., Quirrenbach, A., Buscher, D.F., Mozurkewich, D., et al.: Very high precision orbit of Capella by long baseline interferometry. Astron. J. 107, 1859–1867 (1994a)

    Article  ADS  Google Scholar 

  20. Hummel, C.A., Mozurkewich, D., Elias, N.M., Quirrenbach, A., Buscher, D.F., et al.: Four years of astrometric measurements with the Mark III optical interferometer. Astron. J. 108, 326–336 (1994b)

    Article  ADS  Google Scholar 

  21. Kleppner, D.: Hanbury Brown’s steamroller. Phys. Today 61,8, 8–9 (2008)

    Article  ADS  Google Scholar 

  22. Labeyrie, A.: Interference fringes obtained on Vega with two optical telescopes. Ap. J. 196, L71–75 (1975)

    Article  ADS  Google Scholar 

  23. Lawson, P.R. (ed.): Selected Papers on Long Baseline Stellar Interferometry. SPIE Milestone Series, vol. MS 139. SPIE, Bellingham (1997)

    Google Scholar 

  24. Lawson, P.R.: Notes on the history of stellar interferometry. In: Lawson, P.R. (ed.) Principles of long baseline stellar interferometry. Course notes from the 1999 Michelson Summer School, pp. 325–332. JPL Publication 00-009. JPL, Pasadena (2000)

  25. Léger, A., Mariotti, J.M., Mennesson, B., Ollivier, M., Puget, J.L., et al.: Could we search for primitive life on extrasolar planets in the near future? Icarus 123, 249–255 (1996)

    Article  ADS  Google Scholar 

  26. Leinert, C., Graser, U., Przygodda, F., Waters, L.B.F.M., Perrin, G., et al.: MIDI—the 10 μm instrument on the VLTI. Ap&SS 286, 73–83 (2003)

    Article  ADS  Google Scholar 

  27. Leisawitz, D., Baker, C., Barger, A., et al.: The Space Infrared Interferometric Telescope (SPIRIT): high-resolution imaging and spectroscopy in the far-infrared. Adv. Space Res. 40, 689–703 (2007)

    Article  ADS  Google Scholar 

  28. Levy, G.S., Linfield, R.P., Ulvestad, J.S., Edwards, C.D., Jordan, J.F., di Nardo, J., Christensen, C.S., Preston, R.A., Skjerve, L.J., Blaney, K.B.: Very long baseline interferometric observations made with an orbiting radio telescope. Science 234, 187–189 (1986)

    Article  ADS  Google Scholar 

  29. Michelson, A.A.: On the application of interference methods to astronomical instruments. Phila. Mag. 30, 1–20 (1890)

    Google Scholar 

  30. Michelson, A.A.: Measurement of Jupiter’s satellites by interference. Nature 45, 160–161 (1891)

    Article  ADS  Google Scholar 

  31. Michelson, A.A., Pease, F.G.: Measurement of the diameter of α Orionis. Ap. J. 53, 249–259 (1921)

    Article  ADS  Google Scholar 

  32. Mills, B.Y., Little, A.G., Sheridan, K.V., O.B.: A high-resolution radio telescope for use at 3.5 m. Proc. IRE 46, 67–84 (1958)

    Article  Google Scholar 

  33. Monnier, J.D.: Optical interferometry in astronomy. Rep. Prog. Phys. 66, 789–857 (2003)

    Article  ADS  Google Scholar 

  34. Mourard, D., Tallon-Bosc, I., Blazit, A., Bonneau, D., Merlin, G., et al.: The GI2T interferometer on Plateau de Calern. A&A 283, 705–713 (1994)

    ADS  Google Scholar 

  35. Mozurkewich, D., Armstrong, J.T., Hindsley, R.B., Quirrenbach, A., Hummel, et al.: Angular diameters of stars from the Mark III optical interferometer. Astron. J. 126, 2502–2520 (2003)

    Article  ADS  Google Scholar 

  36. Pawsey, J.L., Payne-Soott, R., McCready, L.L.: Radio-frequency energy from the Sun. Nature 157, 158–159 (1946)

    Article  ADS  Google Scholar 

  37. Perley, R.A., Schwab, F.R., Bridle, A.H. (eds.): Synthesis imaging in radio astronomy. ASP Conf. Ser., vol. 6, 509 pp. Astronomical Society, San Francisco (1989)

  38. Petrov, R.G., Malbet, F., Weigelt, G., Antonelli, P., Beckmann, U., et al.: AMBER, the near-infrared spectro-interferometric three-telescope VLTI instrument. A&A 464, 1–12 (2007)

    Article  ADS  Google Scholar 

  39. Quirrenbach, A.: Optical interferometry. ARAA 39, 353–401 (2001)

    Article  ADS  Google Scholar 

  40. Quirrenbach, A.: Design considerations for an extremely large synthesis array. In: Traub, W.A. (ed.) New Frontiers in Stellar Interferometry. SPIE, vol. 5491, pp. 1563–1573. SPIE, Bellingham (2004)

    Google Scholar 

  41. Quirrenbach, A., Bjorkman, K.S., Bjorkman, J.E., Hummel, C.A., Buscher, D.F., et al.: Constraints on the geometry of circumstellar envelopes: optical interferometric and spectropolarimetric observations of seven Be stars. Ap. J. 479, 477–496 (1997)

    Article  ADS  Google Scholar 

  42. Quirrenbach, A., Coudé du Foresto, V., Daigne, G., Hofmann, K.H., et al.: PRIMA—study for a dual-beam instrument for the VLT Interferometer. In: Reasenberg, R.D. (ed.) Astronomical Interferometry. SPIE, vol. 3350, pp. 807–817. SPIE, Bellingham (1998)

    Google Scholar 

  43. Quirrenbach, A., Mozurkewich, D., Buscher, D.F., Hummel, C.A., Armstrong, J.T.: Angular diameter and limb darkening of Arcturus. A&A 312, 160–166 (1996)

    ADS  Google Scholar 

  44. Richichi, A., Delplancke, F., Paresce, F., Chelli, A. (eds.): The Power of Optical/IR Interferometry: Recent Scientific Results and 2nd Generation Instrumentation. Springer, New York (2008)

    Google Scholar 

  45. Ryle, M.: A new radio interferometer and its application to the observation of weak radio stars. Proc. R. Soc. A 211, 351–375 (1952)

    Article  ADS  Google Scholar 

  46. Ryle, M.: The new Cambridge radio telescope. Nature 194, 517–518 (1962)

    Article  ADS  Google Scholar 

  47. Ryle, M.: Radio telescopes of large resolving power. Nobel Lecture (1974)

  48. Ryle, M., Vonberg, D.D.: Solar radiation at 175 Mc/s. Nature 158, 339–340 (1946)

    Article  ADS  Google Scholar 

  49. Shao, M., Colavita, M.M.: Potential of long-baseline infrared interferometry for narrow-angle astrometry. A&A 262, 353–358 (1992a)

    ADS  Google Scholar 

  50. Shao, M., Colavita, M.M.: Long-baseline optical and infrared stellar interferometry. ARAA 30, 457–498 (1992b)

    Article  ADS  Google Scholar 

  51. Shao, M., Colavita, M.M., Hines, B., Staelin, D., Hutter, D.J., et al.: The Mark III stellar interferometer. A&A 193, 357–371 (1988)

    ADS  Google Scholar 

  52. Shao, M., Staelin, D.H.: First fringe measurements with a phase-tracking stellar interferometer. Appl. Opt. 19, 1519–1522 (1980)

    Article  ADS  Google Scholar 

  53. Stéphan, E.: Sur l’extrême petitesse du diamètre apparent des étoiles fixes. C. R. Acad. Sci. 78, 1008–1012 (1874)

    Google Scholar 

  54. Surdej, J., Caro, D., Detal, A. (eds.): Science cases for next generation optical/infrared interferometric facilities. Proceedings of the 37th Liège International Astrophysical Colloquium. Liège University (2005)

  55. Thompson, A.R., Clark, B.G., Wade, C.M., Napier, P.J.: The very large array. Astron. J. 44(Suppl), 151–167 (1980)

    ADS  Google Scholar 

  56. Thompson, A.R., Moran, J.M., Swenson, G.W.: Interferometry and Synthesis in Radio Astronomy, 534 pp. Wiley, New York (1986)

    Google Scholar 

  57. Tuthill, P.G., Monnier, J.D., Danchi, W.C.: A dusty pinwheel nebula around the massive star WR 104. Nature 398, 487–489 (1999)

    Article  ADS  Google Scholar 

  58. Unwin, S.C., Shao, M., Tanner, A.M., Allen, R.J., Beichman, C.A., et al.: Taking the measure of the universe: precision astrometry with SIM PlanetQuest. PASP 120, 38–88 (2008)

    Article  ADS  Google Scholar 

  59. Whitney, A.R., Shapiro, I.I., Rogers, A.E.E., Robertson, D.S., Knight, C.A., et al.: Quasars revisited: rapid time variations observed via very long baseline interferometry. Science 173, 225–230 (1971)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Quirrenbach.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quirrenbach, A. The development of astronomical interferometry. Exp Astron 26, 49–63 (2009). https://doi.org/10.1007/s10686-009-9166-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-009-9166-5

Keywords

Navigation