Skip to main content
Log in

Astronomical spectroscopy in the last four decades: survival of the fittest

  • Review Article
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

Spectroscopic astronomical instrumentation has much evolved in the last 40 years. Long-slit grating spectrographs with a photographic plate as the detector working in the 0.3–1 μm range were prevalent up to the early 1970s. The replacement of photographic plates by two-dimensional digital detectors provided gains in sensitivity of two orders of magnitude and much better photometric and radial velocity precision, and opened the 1 to 25 μm infrared domain. Another gain in speed by up to two orders of magnitude was then obtained through the development of various spectroscopic systems, each optimized for a subset of astronomical objects. This development was underpinned by a number of technological advances, in particular the development of automatic data reduction pipelines using sophisticated algorithms. With ever larger and more complex instrument systems for the present 8–10 m diameter telescopes—and soon even more for the next generation of Extremely Large Telescopes, the development of an instrument is now a big enterprise, ranging all the way from long-term enabling technology efforts to management of large teams for construction and deployment over typically 7–8 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adam, G., Bacon, R., Courtès, G., Georgelin, Y., Monnet, G., Pécontal, E.: Observations of the Einstein cross 2237+030 with the TIGER integral field spectrograph. A&A 208, L15–L18 (1989)

    ADS  Google Scholar 

  2. Allington-Smith, J.: Integral field spectroscopy for panoramic telescopes. RevMexAA (Serie de Conferencias) 28, 17 (2007)

    ADS  Google Scholar 

  3. Bacon, R.: Probing unexplored territories with muse: a second-generation instrument for the VLT. ESO Messenger 124, 5 (2006)

    ADS  Google Scholar 

  4. Bland-Hawthorn, J., McGrath, A.J., Saunders, W., Haynes, R., Gillingham, P.: Honeycomb: a concept for a programmable integral field spectrograph. Proc. SPIE 5492, 242 (2004). doi:10.1117/12.550291

    Article  ADS  Google Scholar 

  5. Bland-Hawthorn, J., Horton, A.: Instruments without optics: an integrated photonic spectrograph. Proc. SPIE 6269, 21 (2006)

    ADS  Google Scholar 

  6. Buisson, H., Fabry, C., Bourget, H.: An application of interference to the study of the Orion nebula. Ap. J. 40, 241 (1914). doi:10.1086/142119

    Article  ADS  Google Scholar 

  7. Butcher, H.: Multi-aperture spectroscopy at kitt-peak. Proc. SPIE 331, 296 (1982)

    ADS  Google Scholar 

  8. Cameron, M., Weitzel, L., Krabbe, A., Genzl, R., Drapatz, S.: 3D: the new MPE near-infrared field imaging spectrometer. B.A.A.S. 25, 1468C (1993)

    ADS  Google Scholar 

  9. Carranza, G., Courtès, G., Georgelin, Y., Monnet, G., Pourcelot, A.: Interferometric study of ionized hydrogen in M 33: new kinematical and physical data. Ann. Astrophys. (Paris) 31, 63 (1968)

    ADS  Google Scholar 

  10. Content, R.: New design for integral field spectroscopy with 8-m telescopes. Proc. SPIE. 2871, 1295 (1997). doi:10.1117/12.269020

    Article  ADS  Google Scholar 

  11. Courtès, G.: An integral field spectrograph (IFS) for large telescopes. In: Humphries, C.M. (ed.) Instrumentation for Astronomy with Large Optical Telescopes, vol. 92, p. 123. Dordrecht, Reidel, ASSL (1982)

    Google Scholar 

  12. Ellis, S.C., Bland-Hawthorn, J.: The case for OH suppression at near-infrared wavelengths. Mon. Not. R. Astron. Soc. 386, 47 (2008). doi:10.1111/j.1365-2966.2008.13021.x

    Article  ADS  Google Scholar 

  13. Flores, H., Puech, M., Hammer, F., Garrido, O., Hernandez, O.: GIRAFFE multiple integral field units at VLT: a unique tool to recover velocity fields of distant galaxies. A&A 420, L31–L34 (2004)

    Article  ADS  Google Scholar 

  14. Hill, J.M., Angel, J.R.P., Scott, J.S., Lindley, D., Hintzen, P.: Multiple object spectroscopy - The Medusa spectrograph. Astrophys. J. 242, L69–L72 (1980). doi:10.1086/183405

    Article  ADS  Google Scholar 

  15. Hill, G.J., MacQueen, P.J., Adams, J., Tufts, J., Blanc, G., Smith, M.P., Roth, M.M., Kelz, A., Segura, P., Gebhard, K., Good, J., Drory, N.: VIRUS-P: a powerful integral field spectrograph designed for replication. B.A.A.S. 39, 747 (2007)

    Google Scholar 

  16. LeCoarer, E., Blaize, S., Benech, P., Stefanon, I., Morand, A., Lérondel, G., Leblond, G., Kern, P., Fedeli, J.M., Royer, P.: Wavelength-scale stationary-wave integrated Fourier-transform spectrometry. Nature Photonics 1(8), 473 (2007)

    Article  ADS  Google Scholar 

  17. Liller, W.: High dispersion stellar spectroscopy with an echelle grating. Appl. Opt. 9(10), 2332 (1970). doi:10.1364/AO.9.002332

    Article  ADS  Google Scholar 

  18. Marcelin, M., Amram, P., Balard, P., Balkowski, C., Boissin, O., Boulesteix, J., Carignan, C., Daigle, O., de Denus Baillargeon, M.-M., Epinat, B., Gach, J.-L., Hernandez, O., Rigaud, F., Vallée, P.: 3D-NTT: a versatile integral field spectroimager for the NTT. SPIE Conf., vol. 7018. Marseille (2008)

  19. Morris, S., Content, R., Sharples, R., Bower, R., Davies, R., Baugh, C.: A million element integral field unit (MEIFU). Proceedings of the ESO conference on scientific drivers for ESO future VLT/VLTI instrumentation, p. 99 (2002)

  20. Perryman, M.A.C., Favata, F., Peacock, A., Rando, N., Taylor, B.G.: Optical STJ observations of the crab pulsar. A&A 346, L30 (1999)

    ADS  Google Scholar 

  21. Romani, R.W., Miller, A.J., Cabrera, B., Figueroa-Feliciano, E., Nam, S.W.: First astronomical application of a cryogenic transition edge sensor spectrophotometer. Astrophys. J. 521, L153–L156 (1999). doi:10.1086/312202

    Article  ADS  Google Scholar 

  22. Simons, D., Clark, C.C., Smith, S., Ken, J., Massey, S., Maillard, J.P.: CFHT’s imaging Fourier transform spectrometer. Proc. SPIE. 2198, 185 (1994). doi:10.1117/12.176746

    Article  ADS  Google Scholar 

  23. Tully, R.B.: The kinematics and dynamics of M51. 1. The observations. Astrophys. J. Suppl. Ser. 27, 415 (1974). doi:10.1086/190304

    Article  ADS  Google Scholar 

  24. Vanderriest, C.: A fiber-optics dissector for spectroscopy of nebulosities around quasars and similar objects. PASP 92, 858 (Dec. 1980–Jan. 1981)

    Article  ADS  Google Scholar 

  25. Weitzel, L., Krabbe, A., Kroker, H., Thatte, N., Tacconi-Garman, L.E., Cameron, M., Genzel, R.: 3D: The next generation near-infrared imaging spectrometer. A&AS 119, 531 (1996)

    Article  ADS  Google Scholar 

  26. Wilkinson, A., Fosbury, R., Wallace, P., Sharples, R.: Stellar Dynamics of Cen A. B.A.A.S. 15, 921 (1983)

    ADS  Google Scholar 

Download references

Acknowledgements

The author is deeply indebted to the many individuals and organizations which have fueled the rapid development of astronomical instrumentation in the four decades covered here. I would like to apologize for having been forced to skip many clever and highly useful innovations in the field for lack of space (and no doubt in some cases from lack of insight). I have tried hard to give proper credit to the pioneers but again would like to apologize in advance for any glaring mistake or omission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy J. Monnet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monnet, G.J. Astronomical spectroscopy in the last four decades: survival of the fittest. Exp Astron 25, 91–106 (2009). https://doi.org/10.1007/s10686-009-9159-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10686-009-9159-4

Keywords

Navigation