Advertisement

Experimental Economics

, Volume 13, Issue 4, pp 379–398 | Cite as

Information aggregation in experimental asset markets in the presence of a manipulator

  • Helena Veiga
  • Marc VorsatzEmail author
Article

Abstract

We study with the help of a laboratory experiment the conditions under which an uninformed manipulator—a robot trader that unconditionally buys several shares of a common value asset in the beginning of a trading period and unwinds this position later on—is able to induce higher asset prices. We find that the average price is significantly higher in the presence of the manipulator if and only if the asset takes the lowest possible value and insiders receive perfect information about the true value of the asset. It is also evidenced that the robot trader makes trading gains. Finally, both uninformed and partially informed traders may suffer from the presence of the robot.

Keywords

Asset market Experiment Price manipulation Rational expectations 

JEL Classification

C90 G12 G14 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10683_2010_9247_MOESM1_ESM.pdf (426 kb)
(PDF 426 KB)

References

  1. Allen, F., & Gale, D. (1992). Stock price manipulation. Review of Financial Studies, 5, 503–529. CrossRefGoogle Scholar
  2. Bagnoli, M., & Lipman, B. (1996). Stock price manipulation through takeover bids. RAND Journal of Economics, 27, 124–147. CrossRefGoogle Scholar
  3. Benabou, R., & Laroque, G. (1992). Using priviledged information to manipulate markets: insiders, gurus and credibility. Quarterly Journal of Economics, 107, 921–958. CrossRefGoogle Scholar
  4. Camerer, C. (1998). Can asset markets be manipulated? A field experiment with racetrack betting. Journal of Political Economy, 106, 457–482. CrossRefGoogle Scholar
  5. Camerer, C., & Weigelt, K. (1991). Information mirages in experimental asset markets. Journal of Business, 64, 463–493. CrossRefGoogle Scholar
  6. Chakraborty, A., & Yilmaz, B. (2004). Informed manipulation. Journal of Economic Theory, 114, 132–152. CrossRefGoogle Scholar
  7. Chakraborty, A., & Yilmaz, B. (2008). Microstructure bluffing with nested information. American Economic Review: Papers and Proceedings, 98, 280–284. CrossRefGoogle Scholar
  8. Fischbacher, U. (2007). Z-Tree—Zurich Toolbox for Readymade Economic Experiments. Experimental Economics, 10, 171–178. CrossRefGoogle Scholar
  9. Forsythe, R., & Lundholm, R. (1990). Information aggregation in an experimental market. Econometrica, 58, 309–347. CrossRefGoogle Scholar
  10. Forsythe, R., Palfrey, T., & Plott, C. (1982). Asset valuation in an experimental market. Econometrica, 50, 537–567. CrossRefGoogle Scholar
  11. Goldstein, I., & Gümbel, A. (2008). Manipulation and the allocational role of prices. Review of Economic Studies, 75, 133–164. CrossRefGoogle Scholar
  12. Hanson, J., Schmidt, C., & Strobel, M. (2004). Manipulation in political stock markets-preconditions and evidence. Applied Economic Letters, 11, 459–463. CrossRefGoogle Scholar
  13. Hanson, R., & Oprea, R. (2007). A manipulator can aid prediction market accuracy. Economica, 76, 304–314. CrossRefGoogle Scholar
  14. Hanson, R., Oprea, R., & Porter, D. (2006). Information aggregation and manipulation in an experimental Market. Journal of economic behavior and organization, 60, 449–459. CrossRefGoogle Scholar
  15. Hayek, F. (1945). The use of knowledge in society. American Economic Review, 35, 519–530. Google Scholar
  16. Kumar, D., & Seppi, D. (1992). Futures manipulation with cash settlement. Journal of Finance, 47, 1485–1502. CrossRefGoogle Scholar
  17. Kyle, A. (1985). Continuous auctions and insider trading. Econometrica, 53, 1315–1336. CrossRefGoogle Scholar
  18. Manne, H. (1966). Insider trading and the stock market. New York: Free Press. Google Scholar
  19. Muth, J. (1961). Rational expectations and the theory of price movements. Econometrica, 29, 315–335. CrossRefGoogle Scholar
  20. Nöth, M., Camerer, C., Plott, C., & Weber, M. (1999). Information aggregation in experimental asset markets: traps and misaligned beliefs (Mimeo). Google Scholar
  21. Oechssler, J., Schmidt, C., & Schnedler, W. (2008). On the ingredients for bubble formation: informed traders and communication (Mimeo). Google Scholar
  22. Ottaviani, M., & Sørensen, P. (2007). Outcome manipulation in corporate prediction markets. Journal of the European Economic Association, 5, 554–563. CrossRefGoogle Scholar
  23. Park, A., & Sabourian, H. (2009). Herding and contrarian behavior in financial markets (Mimeo). Google Scholar
  24. Pearlstein, S. (2003). Misplacing trust in the markets. Washington Post, July 30. Google Scholar
  25. Plott, C., & Sunder, S. (1982). Efficiency of experimental security markets with insider information: an application to rational-expectations models. Journal of Political Economy, 90, 663–698. CrossRefGoogle Scholar
  26. Plott, C., & Sunder, S. (1988). Rational expectations and the aggregation of diverse information in laboratory security markets. Econometrica, 56, 1085–1118. CrossRefGoogle Scholar
  27. Smith, V., Suchanek, G., & Williams, A. (1988). Bubbles, crashes, and endogenous expectations in experimental spot asset markets. Econometrica, 56, 1119–1151. CrossRefGoogle Scholar
  28. Strumpf, K., & Rhode, P. (2003). Historical presidential betting markets. Journal of Economic Perspectives, 18, 127–141. Google Scholar
  29. Sunder, S. (1992). Market for information: experimental evidence. Econometrica, 60, 667–695. CrossRefGoogle Scholar
  30. Veiga, H., & Vorsatz, M. (2009). Price manipulation in an experimental asset market. European Economic Review, 53, 327–342. CrossRefGoogle Scholar
  31. Wolfers, J., & Zitzewitz, E. (2004). Prediction markets. Journal of Economic Perspectives, 18, 107–126. CrossRefGoogle Scholar
  32. Wyden, R., & Dorgan, B. (2003). Call for immediate halt to tax-funded “Terror Market” scheme. Press Release July 28. Google Scholar

Copyright information

© Economic Science Association 2010

Authors and Affiliations

  1. 1.Department of StatisticsUniversidad Carlos III MadridGetafeSpain
  2. 2.Finance Research CenterISCTE Business SchoolLisbonPortugal
  3. 3.Fundación de Estudios de Economía Aplicada (FEDEA)MadridSpain

Personalised recommendations