Skip to main content
Log in

The role of climatic niche divergence in the speciation of the genus Neurergus: An inter-and intraspecific survey

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Variations in climatic conditions over space and time play an important role in speciation. In this study, climate variables that may be influencing the evolution of the genus Neurergus were explored at both interspecific levels for the four recognized species (N. strauchii, N. crocatus, N. derjugini, and N. kaiseri) and intraspecific levels for three of the species. This was accomplished by predictions in geographical (G)-space using an ensemble of ten algorithms and ordination techniques, which included equivalency and background statistics of niche overlap and niche divergence tests in environmental (E)-space. At the interspecific level, results revealed significant evidence for niche divergence in species’ bioclimatic preferences, supporting the hypothesis that niche divergence drives Neurergus diversification. These patterns, however, were not found at the intraspecific level and were identical in their environmental niches. Results of the present study provide an important insight into the evolutionary history of Neurergus in the Near East and help to elucidate how environmental changes contributed to lineage diversification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

Bioclimatic variables data with a 30-second spatial resolution (~ 1 km) are available in climatologies at high resolution for the earth’s land surface areas (CHELSA) for 1979–2013 (https://chelsa-climate.org/bioclim/). Due to the sensibility of Neurergus populations, species occurrence records are available under-motivated requests to s.vaissi@razi.ac.ir.

References

  • Abrahms B, Welch H, Brodie S et al (2019) Dynamic ensemble models to predict distributions and anthropogenic risk exposure for highly mobile species. Divers Distrib 25:1182–1193

    Article  Google Scholar 

  • Ackerly DD, Schwilk DW, Webb CO (2006) Niche evolution and adaptive radiation: testing the order of trait divergence. Ecology 87:S50–S61

    Article  CAS  PubMed  Google Scholar 

  • Afroosheh M, Rödder D, Mikulicek P et al (2019) Mitochondrial DNA variation and Quaternary range dynamics in the endangered Yellow Spotted Mountain Newt, Neurergus derjugini (Caudata, Salamandridae). J Zool Syst Evol Res 57:580–590

    Article  Google Scholar 

  • Afroosheh M, Sharifi M (2014) Studying migratory activity and home range of adult Neurergus microspilotus (NESTEROV, 1916) in the Kavat Stream, western Iran, using photographic identification (Caudata: Salamandridae). Herpetozoa 27:77–82

    Google Scholar 

  • Alberdi A, Gilbert MTP, Razgour O et al (2015) Contrasting population-level responses to Pleistocene climatic oscillations in an alpine bat revealed by complete mitochondrial genomes and evolutionary history inference. J Biogeogr 42:1689–1700

    Article  Google Scholar 

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232

    Article  Google Scholar 

  • Alvarado-Serrano DF, Knowles LL (2014) Ecological niche models in phylogeographic studies: applications, advances and precautions. Mol Ecol Resour 14:233–248

    Article  PubMed  Google Scholar 

  • Alexander Pyron R, Burbrink FT (2009) Lineage diversification in a widespread species: roles for niche divergence and conservatism in the common kingsnake, Lampropeltis getula. Mol Ecol 18:3443–3457

    Article  CAS  PubMed  Google Scholar 

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    Article  PubMed  Google Scholar 

  • Arenas-Castro S, Gonçalves J, Alves P et al (2018) Assessing the multi-scale predictive ability of ecosystem functional attributes for species distribution modelling. PLoS ONE 13:e0199292

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ashrafzadeh MR, Naghipour AA, Haidarian M et al (2019) Effects of climate change on habitat and connectivity for populations of a vulnerable, endemic salamander in Iran. Glob Ecol Conserv 19:e00637

    Article  Google Scholar 

  • Barabanov AV, Litvinchuk SN (2015) A new record of the Kurdistan newt (Neurergus derjugini) in Iran and potential distribution modeling for the species. Russ J Herpetol 22:107–115

    Google Scholar 

  • Beale CM, Lennon JJ, Gimona A (2008) Opening the climate envelope reveals no macroscale associations with climate in European birds. Proc Natl Acad Sci 105:14908–14912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beebee TJC, Griffiths RA (2005) The amphibian decline crisis: a watershed for conservation biology? Biol Conserv 125:271–285

    Article  Google Scholar 

  • Bogaerts S, Pasmans F, Woeltjes T (2006) Ecology and conservation aspects of Neurergus strauchii (Amphibia: Salamandridae). Proceedings of 13th Congress of the Societas Europaea Herpetologica; Bonn

  • Bovo RP, Navas CA, Tejedo M et al (2018) Ecophysiology of Amphibians: Information for Best Mechanistic Models. Divers 10:118

    Article  Google Scholar 

  • Broennimann O, Fitzpatrick MC, Pearman PB et al (2012) Measuring ecological niche overlap from occurrence and spatial environmental data. Glob Ecol Biogeogr 21:481–497

    Article  Google Scholar 

  • Brown JL, Carnaval AC (2019) A tale of two niches: methods, concepts, and evolution. Front Biogeogr 11:e44158

    Article  Google Scholar 

  • Calatayud J, Rodríguez M, Molina-Venegas R et al (2019) Pleistocene climate change and the formation of regional species pools. Proc R Soc B 286:20190291

    Article  PubMed  PubMed Central  Google Scholar 

  • Cadena CD, Kozak KH, Gómez JP et al (2012) Latitude, elevational climatic zonation and speciation in New World vertebrates. Proc R Soc B Biol Sci 279:194–201

    Article  Google Scholar 

  • Cheng H, Sinha A, Cruz FW et al (2013) Climate change patterns in Amazonia and biodiversity. Nat Commun 4:1–6

    Article  Google Scholar 

  • Çiçek K, Koyun M, Mermer A, Tok CV (2020) Food composition of a breeding population of the endemic anatolia newt, Neurergus strauchii (Steindachner, 1887) (caudata: Salamandridae), from Bingöl, eastern Turkey. Acta Herpetol 15:105–110

    Google Scholar 

  • Collart F, Hedenäs L, Broennimann O et al (2021) Intraspecific differentiation: Implications for niche and distribution modelling. J Biogeogr 48:415–426

    Article  Google Scholar 

  • Collins JP (2010) Amphibian decline and extinction: what we know and what we need to learn. Dis Aquat Organ 92:93–99

    Article  PubMed  Google Scholar 

  • Collins JP, Storfer A (2003) Global amphibian declines: sorting the hypotheses. Divers Distrib 9:89–98

    Article  Google Scholar 

  • Cuervo PF, Flores FS, Venzal JM, Nava S (2021) Niche divergence among closely related taxa provides insight on evolutionary patterns of ticks. J Biogeogr 48:2865–2876

    Article  Google Scholar 

  • De Kort H, Prunier JG, Ducatez S et al (2021) Life history, climate and biogeography interactively affect worldwide genetic diversity of plant and animal populations. Nat Commun 12:1–11

    CAS  Google Scholar 

  • Di Cola V, Broennimann O, Petitpierre B et al (2017) ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40:774–787

    Article  Google Scholar 

  • Dool SE, Picker MD, Eberhard MJB (2022) Limited dispersal and local adaptation promote allopatric speciation in a biodiversity hotspot. Mol Ecol 31:279–295

    Article  CAS  PubMed  Google Scholar 

  • Dynesius M, Jansson R (2000) Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proc Natl Acad Sci 97:9115–9120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elith J, Graham H, Anderson CP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Enriquez-Urzelai U, Kearney MR, Nicieza AG, Tingley R (2019) Integrating mechanistic and correlative niche models to unravel range-limiting processes in a temperate amphibian. Glob Chang Biol 25:2633–2647

    Article  PubMed  Google Scholar 

  • Farasat H, Akmali V, Sharifi M (2016) Population genetic structure of the endangered Kaiser’s mountain newt, Neurergus kaiseri (Amphibia: Salamandridae). PLoS ONE 11:e0149596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ford AGP, Rüber L, Newton J et al (2016) Niche divergence facilitated by fine-scale ecological partitioning in a recent cichlid fish adaptive radiation. Evolution 70:2718–2735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forester BR, DeChaine EG, Bunn AG (2013) Integrating ensemble species distribution modelling and statistical phylogeography to inform projections of climate change impacts on species distributions. Divers Distrib 19:1480–1495

    Article  Google Scholar 

  • Galbreath KE, Hafner DJ, Zamudio KR (2009) When cold is better: climate-driven elevation shifts yield complex patterns of diversification and demography in an alpine specialist (American pika, Ochotona princeps). Evol Int J Org Evol 63:2848–2863

    Article  CAS  Google Scholar 

  • Goudarzi F, Hemami M-R, Malekian M et al (2021) Species versus within-species niches: a multi-modelling approach to assess range size of a spring-dwelling amphibian. Sci Rep 11:597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goudarzi F, Hemami M-R, Rancilhac L et al (2019) Geographic separation and genetic differentiation of populations are not coupled with niche differentiation in threatened Kaiser’s spotted newt (Neurergus kaiseri). Sci Rep 9:6239

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Graham C, Ron S, Santos J et al (2004) Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution 58:1781–1793

    Article  PubMed  Google Scholar 

  • Grant EHC, Zipkin EF, Nichols JD, Campbell JP (2013) A Strategy for monitoring and managing declines in an amphibian community. Conserv Biol 27:1245–1253

    Article  PubMed  Google Scholar 

  • Guisan A, Thuiller W, Zimmermann NE (2018) Habitat suitability and distribution models. With Applications in R. Cambridge University Press

  • Hanson JO, Rhodes JR, Butchart SHM et al (2020) Global conservation of species’ niches. Nature 580:232–234

    Article  CAS  PubMed  Google Scholar 

  • Hao T, Elith J, Guillera-Arroita G, Lahoz‐Monfort JJ (2019) A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers Distrib 25:839–852

    Article  Google Scholar 

  • Hays JD, Imbrie J, Shackleton NJ (1976) Variations in the Earth’s orbit: pacemaker of the ice ages. American Association for the Advancement of Science Washington, DC

  • Heikkinen RK, Luoto M, Araújo MB et al (2006) Methods and uncertainties in bioclimatic envelope modelling under climate change. Prog Phys Geogr 30:751–777

    Article  Google Scholar 

  • Hendrix R, Fleck J, Schneider W et al (2014) First comprehensive insights into nuclear and mitochondrial DNA based population structure of Near East mountain brook newts (Salamandridae: genus Neurergus) suggest the resurrection of Neurergus derjugini. Amphibia-Reptilia 35:173–187

    Article  Google Scholar 

  • Heydari N, Hosseinian Yousefkhani SS, Faizi H (2021) Comments on the distribution and population estimation of Neurergus derjugini (Urodela, Salamandridae) in western Iran. J Wildl Biodivers 5:68–81

    Google Scholar 

  • Hoskin CJ, Tonione M, Higgie M et al (2011) Persistence in peripheral refugia promotes phenotypic divergence and speciation in a rainforest frog. Am Nat 178:561–578

    Article  PubMed  Google Scholar 

  • Hua X, Wiens JJ (2010) Latitudinal variation in speciation mechanisms in frogs. Evol Int J Org Evol 64:429–443

    Article  Google Scholar 

  • Hua X, Wiens JJ (2013) How does climate influence speciation? Am Nat 182:1–12

    Article  PubMed  Google Scholar 

  • IUCN SSC Amphibian Specialist Group (2016) Neurergus kaiseri. The IUCN Red List of Threatened Species 2016: e.T59450A49436271. https://doi.org/10.2305/IUCN.UK.2016-3.RLTS.T59450A49436271.en. Downloaded on 05 October 2021

  • Jehle R (2010) Predicting the fate of metapopulations is aided by DNA fingerprinting of individuals. Anim Conserv 13:125–126

    Article  Google Scholar 

  • Jehle R, Arntzen JW (2000) Post-breeding migrations of newts (Triturus cristatus and T. marmoratus) with contrasting ecological requirements. J Zool 251:297–306

    Article  Google Scholar 

  • Johannesson K (2001) Parallel speciation: a key to sympatric divergence. Trends Ecol Evol 16:148–153

    Article  CAS  PubMed  Google Scholar 

  • Kaky E, Nolan V, Alatawi A, Gilbert F (2020) A comparison between Ensemble and MaxEnt species distribution modelling approaches for conservation: A case study with Egyptian medicinal plants. Ecol Inf 60:101150

    Article  Google Scholar 

  • Karger DN, Conrad O, Böhner J et al (2017) Climatologies at high resolution for the earth’s land surface areas. Sci data 4:1–20

    Article  Google Scholar 

  • Kindt R (2018) Ensemble species distribution modelling with transformed suitability values. Environ Model Softw 100:136–145

    Article  Google Scholar 

  • Knouft JH, Losos JB, Glor RE, Kolbe JJ (2006) Phylogenetic analysis of the evolution of the niche in lizards of the Anolis sagrei group. Ecology 87:S29–S38

    Article  PubMed  Google Scholar 

  • Kozak KH, Wiens J (2006) Does niche conservatism promote speciation? A case study in North American salamanders. Evolution 60:2604–2621

    Article  PubMed  Google Scholar 

  • Kozak KH, Wiens JJ (2007) Climatic zonation drives latitudinal variation in speciation mechanisms. Proc R Soc B Biol Sci 274:2995–3003

    Article  Google Scholar 

  • Kozak KH, Wiens JJ (2010a) Accelerated rates of climatic-niche evolution underlie rapid species diversification. Ecol Lett 13:1378–1389

    Article  PubMed  Google Scholar 

  • Kozak KH, Wiens JJ (2010b) Niche conservatism drives elevational diversity patterns in Appalachian salamanders. Am Nat 176:40–54

    Article  PubMed  Google Scholar 

  • Kurnaz M, Şahin MK (2021) A contribution to the biogeography and taxonomy of two Anatolian mountain brook newts, Neurergus barani and N. strauchii (Amphibia: Salamandridae) using ecological niche modeling. Turkish J Zool 45:54–64

    Article  Google Scholar 

  • Lee S, Jung H, Choi J (2021) Projecting the impact of climate change on the spatial distribution of six subalpine tree species in South Korea using a multi-model ensemble approach. Forests 12:37

    Article  Google Scholar 

  • Li Q, Grossenbacher DL, Angert AL (2018) The effect of range overlap on ecological niche divergence depends on spatial scale in monkeyflowers. Evolution 72:2100–2113

    Article  PubMed  Google Scholar 

  • Maia-Carvalho B, Vale CG, Sequeira F et al (2018) The roles of allopatric fragmentation and niche divergence in intraspecific lineage diversification in the common midwife toad (Alytes obstetricans). J Biogeogr 45:2146–2158

    Article  Google Scholar 

  • Malekoutian M, Sharifi M, Vaissi S (2020) Mitochondrial DNA sequence analysis reveals multiple Pleistocene glacial refugia for the Yellow-spotted mountain newt, Neurergus derjugini (Caudata: Salamandridae) in the mid-Zagros range in Iran and Iraq. Ecol Evol 10:2661–2676

    Article  PubMed  PubMed Central  Google Scholar 

  • Malekoutian M, Sharifi M, Vaissi S (2021) Potential impact of climate change on the distribution of the Yellow-spotted mountain newt Neurergus derjugini (Nesterov, 1916). Environ Sci 19:199–216

    Google Scholar 

  • Marmion M, Parviainen M, Luoto M et al (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib 15:59–69

    Article  Google Scholar 

  • McCormack JE, Zellmer AJ, Knowles LL (2010) Does niche divergence accompany allopatric divergence in Aphelocoma jays as predicted under ecological speciation?: insights from tests with niche models. Evol Int J Org Evol 64:1231–1244

    Google Scholar 

  • Moritz C, Patton JL, Schneider CJ, Smith TB (2000) Diversification of rainforest faunas: an integrated molecular approach. Annu Rev Ecol Syst 31:533–563

    Article  Google Scholar 

  • Müllner A (2001) Spatial patterns of migrating great crested newts and smooth newts: the importance of the terrestrial habitat surrounding the breeding pond. Rana 4:279–293

    Google Scholar 

  • Nunes LA, Pearson RG (2017) A null biogeographical test for assessing ecological niche evolution. J Biogeogr 44:1331–1343

    Article  Google Scholar 

  • Olgun K, Avcı A, Bozkurt E et al (2015) Range extensions of two salamanders [Neurergus strauchii (Steindachner, 1887) and Salamandra infraimmaculata martens, 1885] (caudata: Salamandridae) from anatolia, Turkey. Russ J Herpetol 22:289–296

    Google Scholar 

  • Özdemir N, Üzüm N, Avci A, Olgun K (2009) Phylogeny of Neurergus crocatus and Neurergus strauchii in Turkey based on morphological and molecular data. Herpetologica 65:280–291

    Article  Google Scholar 

  • Papenfuss T, Sparreboom M, Tok V et al (2009a) Neurergus strauchii. The IUCN Red List of Threatened Species 2009: e.T14735A4458797. https://dx.doi.org/10.2305/IUCN.UK.2009.RLTS.T14735A4458797.en. Downloaded on 05 October 2021

  • Papenfuss T, Sparreboom M, Ugurtas IH et al (2009b) Neurergus crocatus (errata version published in 2016). The IUCN Red List of Threatened Species 2009: e.T14734A86247230. https://dx.doi.org/10.2305/IUCN.UK.2009.RLTS.T14734A4458480.en. Downloaded on 05 October 2021

  • Pearman PB, Guisan A, Broennimann O, Randin CF (2008) Niche dynamics in space and time. Trends Ecol Evol 23:149–158

    Article  PubMed  Google Scholar 

  • Peterson AT, Soberón J, Pearson RG et al (2011) Ecological niches and geographic distributions (MPB-49). Princeton University Press

  • Peterson AT, Soberón J, Sánchez-Cordero V (1999) Conservatism of ecological niches in evolutionary time. Science 285:1265–1267

    Article  CAS  PubMed  Google Scholar 

  • Petitpierre B, Kueffer C, Broennimann O et al (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science 335:1344–1348

    Article  CAS  PubMed  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259

    Article  Google Scholar 

  • Qiao H, Peterson AT, Campbell LP et al (2016) NicheA: creating virtual species and ecological niches in multivariate environmental scenarios. Ecography 39:805–813

    Article  Google Scholar 

  • Ramirez-Reyes C, Nazeri M, Street G et al (2021) Embracing ensemble species distribution models to inform at-risk species status assessments. J Fish Wildl Manag 12:98–111

    Article  Google Scholar 

  • Rancilhac L, Goudarzi F, Gehara M et al (2019) Phylogeny and species delimitation of near Eastern Neurergus newts (Salamandridae) based on genome-wide RADseq data analysis. Mol Phylogenet Evol 133:189–197

    Article  PubMed  Google Scholar 

  • Rather TA, Kumar S, Khan JA (2020) Multi-scale habitat modelling and predicting change in the distribution of tiger and leopard using random forest algorithm. Sci Rep 10:111473–111419

    Article  CAS  Google Scholar 

  • Razgour O, Forester B, Taggart JB et al (2019) Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc Natl Acad Sci 116:10418 LP – 10423

  • Rodríguez-Rodríguez EJ, Beltrán JF, Tejedo M et al (2020) Niche models at inter-and intraspecific levels reveal hierarchical niche differentiation in midwife toads. Sci Rep 10:10942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rundle HD, Nosil P (2005) Ecological speciation. Ecol Lett 8:336–352

    Article  Google Scholar 

  • Salehi T, Akmali V, Sharifi M (2019) Population genetic structure of the endangered yellow spotted mountain newt (Neurergus derjugini: Amphibia, Caudata) inferred from mitochondrial DNA sequences. Herpetol J 29:37–47

    Article  Google Scholar 

  • Sänen KR, Laurila A, Merilä J (2003) Geographic variation in acid stress tolerance of the moor frog, Rana arvalis. I. Local adaptation. Evolution 57:352–362

    Article  Google Scholar 

  • Schluter D (2001) Ecology and the origin of species. Trends Ecol Evol 16:372–380

    Article  CAS  PubMed  Google Scholar 

  • Schluter D (2009) Evidence for ecological speciation and its alternative. Science 323:737–741

    Article  CAS  PubMed  Google Scholar 

  • Seeholzer GF, Claramunt S, Brumfield RT (2017) Niche evolution and diversification in a Neotropical radiation of birds (Aves: Furnariidae). Evolution 71:702–715

    Article  PubMed  Google Scholar 

  • Sharifi M, Farasat H, Barani-Beiranv H et al (2013) Notes on the distribution and abundance of the endangered Kaiser’s Mountain Newt, Neurergus kaiseri (Caudata: Salamandridae), in southwestern Iran. Herpetol Conserv Biol 8:724–731

    Google Scholar 

  • Sharifi M, Shafiei Bafti S, Papenfuss T et al (2009) Neurergus microspilotus (errata version published in 2016). The IUCN Red List of Threatened Species 2009: e.T59451A86642381. https://dx.doi.org/10.2305/IUCN.UK.2009.RLTS.T59451A11944058.en. Downloaded on 22 March 2021

  • Skelly DK, Yurewicz KL, Werner EE, Relyea RA (2003) Estimating decline and distributional change in amphibians. Conserv Biol 17:744–751

    Article  Google Scholar 

  • Smith AB, Godsoe W, Rodríguez-Sánchez F et al (2019) Niche estimation above and below the Species level. Trends Ecol Evol 34:260–273

    Article  PubMed  Google Scholar 

  • Smith BT, McCormack JE, Cuervo AM et al (2014) The drivers of tropical speciation. Nature 515:406–409

    Article  CAS  PubMed  Google Scholar 

  • Steinfartz S, Hwang UW, Tautz D et al (2002) Molecular phylogeny of the salamandrid genus Neurergus: evidence for an intrageneric switch of reproductive biology. Amphibia-Reptilia 23:419–431

    Article  Google Scholar 

  • Stokstad E (2004) Global survey documents puzzling decline of amphibians. Science 306:391

    Article  CAS  PubMed  Google Scholar 

  • Storfer A, Murphy MA, Spear SF et al (2010) Landscape genetics: where are we now? Mol Ecol 19:3496–3514

    Article  PubMed  Google Scholar 

  • Stuart SN, Chanson JS, Cox NA et al (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786

    Article  CAS  PubMed  Google Scholar 

  • Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD–a platform for ensemble forecasting of species distributions. Ecography 32:369–373

    Article  Google Scholar 

  • Tocchio LJ, Gurgel-Gonçalves R, Escobar LE, Peterson AT (2015) Niche similarities among white‐eared opossums (Mammalia, Didelphidae): Is ecological niche modelling relevant to setting species limits? Zool Scr 44:1–10

    Article  Google Scholar 

  • Tok C, Koyun M, Çiçek K (2016) Predicting the current and future potential distributions of Anatolia Newt, Neurergus strauchii (Steindachner, 1887), with a new record from Elazığ (Eastern Anatolia, Turkey). Biharean Biol 10:104–108

    Google Scholar 

  • Vaissi S, Rezaei S (2022) Niche divergence at intraspecific level in the Hyrcanian wood frog, Rana pseudodalmatina: a phylogenetic, climatic, and environmental survey. Front Ecol Evol 20:774481

    Article  Google Scholar 

  • Vaissi S (2021a) Historic range dynamics in Kaisers’s mountain newt (Neurergus kaiseri): insights from phylogeographic analyses and species distribution modelling. Ecol Evol 11:7622–7633

    Article  PubMed  PubMed Central  Google Scholar 

  • Vaissi S (2021b) Design of protected area by tracking and excluding the effects of climate and landscape change: a case study using Neurergus derjugini. Sustainability 13:5645

    Article  Google Scholar 

  • Vaissi S (2021c) Potential changes in the distributions of Near Eastern fire salamander (Salamandra infraimmaculata) in response to historical, recent and future climate change in the Near and Middle East: implication for conservation and management. Glob Ecol Conserv 29:e01730

    Article  Google Scholar 

  • Vaissi S, Sharifi M (2019) Integrating multi-criteria decision analysis with a GIS-based siting procedure to select a protected area for the Kaiser’s mountain newt, Neurergus kaiseri (Caudata: Salamandridae). Glob Ecol Conserv 20:e00738

    Article  Google Scholar 

  • Vaissi S, Sharifi M (2021) The least-cost path analysis of landscape genetics identifies two dispersal routes for the threatened Kaiser’s mountain newt (Caudata: Salamandridae). J Zool Syst Evol Res 59:1491–1502

    Article  Google Scholar 

  • Wang R, Ma L (2016) Climate-driven C 4 plant distributions in China: divergence in C 4 taxa. Sci Rep 6:27977

    Article  PubMed  PubMed Central  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2010) ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33:607–611

    Google Scholar 

  • Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evol Int J Org Evol 62:2868–2883

    Article  Google Scholar 

  • Warren DL, Matzke NJ, Cardillo M et al (2021) ENMTools 1.0: an R package for comparative ecological biogeography. Ecography 44:504–511

    Article  Google Scholar 

  • Wisz MS, Guisan A (2009) Do pseudo-absence selection strategies influence species distribution models and their predictions? An information-theoretic approach based on simulated data. BMC Ecol 9:1–16

    Article  Google Scholar 

  • Woeltjes T, Bogaerts S, Carranza S, Pasmans F (2006) Biogeography of Neurergus strauchii barani Öz, 1994 and N. s. strauchii (Steindachner, 1887) (Amphibia: Salamandridae) assessed using morphological and molecular data. Amphibia-Reptilia 27:281–288

  • Woodman SM, Forney KA, Becker EA et al (2019) Esdm: a tool for creating and exploring ensembles of predictions from species distribution and abundance models. Methods Ecol Evol 10:1923–1933

    Article  Google Scholar 

  • Xue C, Geng F, Li J et al (2021) Divergence in the Aquilegia ecalcarata complex is correlated with geography and climate oscillations: Evidence from plastid genome data. Mol Ecol 30:5796–5813

    Article  PubMed  Google Scholar 

  • Yildiz MZ, Bozkurt MA, Akman B et al (2018) Some new records of Anatolia Newt, Neurergus strauchii (Steindacher 1887) from Eastern Anatolia, Turkey. Biol Divers Conserv 11:120–124

    Google Scholar 

  • Yu F, Groen TA, Wang T et al (2017) Climatic niche breadth can explain variation in geographical range size of alpine and subalpine plants. Int J Geogr Inf Sci 31:190–212

    Article  Google Scholar 

  • Zimmermann NE, Yoccoz NG, Edwards TC et al (2009) Climatic extremes improve predictions of spatial patterns of tree species. Proc Natl Acad Sci 106:19723–19728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somaye Vaissi.

Ethics declarations

Conflict of interest

The author declare that she has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaissi, S. The role of climatic niche divergence in the speciation of the genus Neurergus: An inter-and intraspecific survey. Evol Ecol 36, 389–407 (2022). https://doi.org/10.1007/s10682-022-10172-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-022-10172-x

Keywords

Navigation