The effect of genetics, diet, and social environment on adult male size in a sexually dimorphic spider

Abstract

The role of developmental plasticity in the evolution and maintenance of sexual size dimorphism (SSD) has recently received more attention. We experimentally investigated the effects of genetics (pedigree), social cues, and food availability on developmental time and adult male size in Nephilingis cruentata, an extremely female-biased sexually size dimorphic spider with notable male size variation. In a split-brood design, we exposed spiderlings of known pedigrees to either a high or low feeding regime. We tested the males’ ability to match the sub-adult growth and time of maturation to the perceived female availability and male competition by exposing them to silk cues of either males or females during the subadult stage. We recorded male size at maturation and total developmental time, the duration of the sub-adult stage, and the growth during the sub-adult stage. Poorly fed males had a longer development and matured at extremely small sizes compared to well-fed males. The social cues did not influence the duration of the sub-adult stage nor the male size at maturation. However, males exposed to male cues grew more and were heavier at reaching maturity than those exposed to female cues, which implies that sub-adult males respond to perceived male–male competition by investing more in growth. Furthermore, variation in male size has been explained by low additive genetic variability but high maternal effects. Our results highlight the role of maternal effects and/or common environment in shaping male body size. Future studies with a scope for maternal effects on SSD are warranted.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Andrade MCB (2019) Chapter five—sexual selection and social context: web-building spiders as emerging models for adaptive plasticity. In: Naguib M, Barrett L, Healy SD et al (eds) Advances in the study of behavior. Academic Press, Cambridge, pp 177–250

    Google Scholar 

  2. Andrade MCB, Kasumovic MM (2005) Terminal investment strategies and male mate choice: extreme tests of Bateman. Integr Comp Biol 45:838–847. https://doi.org/10.1093/icb/45.5.838

    Article  PubMed  Google Scholar 

  3. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using Ime4. J Stat Softw. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  4. Blanckenhorn WU (2000) The evolution of body size: what keeps organisms small? Q Rev Biol 75:385–407. https://doi.org/10.1086/393620

    CAS  Article  PubMed  Google Scholar 

  5. Chelini MC, Hebets E (2017) Field evidence challenges the often-presumed relationship between early male maturation and female-biased sexual size dimorphism. Ecol Evol 7:9592–9601. https://doi.org/10.1002/ece3.3450

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cordellier M, Schneider JM, Uhl G, Posnien N (2020) Sex differences in spiders: from phenotype to genomics. Dev Genes Evol 230:155–172. https://doi.org/10.1007/s00427-020-00657-6

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cory A-L, Schneider JM (2017) Effects of social information on life history and mating tactics of males in the orb-web spider Argiope bruennichi. Ecol Evol. https://doi.org/10.1002/ece3.3672

    Article  PubMed  PubMed Central  Google Scholar 

  8. Danielson-François A, Hou C, Cole N, Tso IM (2012) Scramble competition for moulting females as a driving force for extreme male dwarfism in spiders. Anim Behav 84:937–945. https://doi.org/10.1016/j.anbehav.2012.07.018

    Article  Google Scholar 

  9. Davis TS, Landolt PJ (2012) Body size phenotypes are heritable and mediate fecundity but not fitness in the lepidopteran frugivore Cydia pomonella. Naturwissenschaften 99:483–491. https://doi.org/10.1007/s00114-012-0923-3

    CAS  Article  PubMed  Google Scholar 

  10. De Block M, McPeek MA, Stoks R (2008) Life history plasticity to combined time and biotic constraints in Lestes damselflies from vernal and temporal ponds. Oikos 117:908–916. https://doi.org/10.1111/j.0030-1299.2008.16603.x

    Article  Google Scholar 

  11. de Villemereuil P, Morrissey MM, Nakagawa S, Schielzeth H (2018) Fixed effect variance and the estimation of repeatabilities and heritabilities: issues and solutions. J Evol Biol 31:621–632. https://doi.org/10.1111/jeb.13232

    Article  PubMed  Google Scholar 

  12. Desender K (1989) Heritability of wing development and body size in a carabid beetle, Pogonus chalceus MARSHAM, and its evolutionary significance. Oecologia 78:513–520

    Article  Google Scholar 

  13. Elgar MA, Herberstein ME, Schneider JM (2003) Male mate choice and patterns of paternity in the polyandrous, sexually cannibalistic orb-web spider Nephila plumipes. Aust J Zool 51:357–365. https://doi.org/10.1071/ZO02079

    Article  Google Scholar 

  14. English S, Cowen H, Garnett E, Hargrove JW (2016) Maternal effects on offspring size in a natural population of the viviparous tsetse fly. Ecol Entomol 41:618–626. https://doi.org/10.1111/een.12333

    Article  Google Scholar 

  15. Fabricius JC (1775) Systema entomologiae, sistens insectorum classes, ordines, genera, species, adiectis, synonymis, locis descriptionibus observationibus. Nabu Press, Charleston

    Google Scholar 

  16. Fernández-Montraveta C, Moya-Laraño J (2007) Sex-specific plasticity of growth and maturation size in a spider: implications for sexual size dimorphism. J Evol Biol 20:1689–1699. https://doi.org/10.1111/j.1420-9101.2007.01399.x

    Article  PubMed  Google Scholar 

  17. Foellmer MW, Moya-Laraño J (2007) Sexual size dimorphism in spiders: patterns and processes. In: Fairbairn DJ, Blackenhorn WU, Szekely T (eds) Sex, size and gender roles: evolutionary studies of sexual size dimorphism. Oxford University Press, Oxford, pp 71–81

    Google Scholar 

  18. Fromhage L, Schneider JM (2005) Safer sex with feeding females: sexual conflict in a cannibalistic spider. Behav Ecol 16(2):377–382

    Article  Google Scholar 

  19. Gage MJG (1995) Continuous variation in reproductive strategy as an adaptive response to population density in the moth Plodia interpunctella. Proc R Soc B 261:25–30

    Article  Google Scholar 

  20. Gurka MJ, Edwards LJ, Muller KE, Kupper LL (2006) Extending the Box–Cox transformation to the linear mixed model. J R Stat Soc Ser A Stat Soc 169:273–288. https://doi.org/10.1111/j.1467-985X.2005.00391.x

    Article  Google Scholar 

  21. Hadfield JD (2010) MCMCglmm: MCMC methods for multi-response GLMMs in R. J Stat Softw 33:1–22. https://doi.org/10.1002/ana.22635

    Article  Google Scholar 

  22. Hagstrum DW (1971) Carapace width as a tool for evaluating the rate of development of spiders in the laboratory and the field. Ann Entomol Soc Am 64:757–760

    Article  Google Scholar 

  23. Hansen TF, Pélabon C, Houle D (2011) Heritability is not Evolvability. Evol Biol 38:258–277. https://doi.org/10.1007/s11692-011-9127-6

    Article  Google Scholar 

  24. Higgins L (1993) Constraints and plasticity in the development of juvenile Nephila clavipes in Mexico. J Arachnol 21:107–119. https://doi.org/10.2307/3705821

    Article  Google Scholar 

  25. Higgins L (2000) The interaction of season length and development time alters size at maturity. Oecologia 122:51–59. https://doi.org/10.1007/PL00008835

    CAS  Article  PubMed  Google Scholar 

  26. Higgins L, Goodnight C (2011) Developmental response to low diets by giant Nephila clavipes females (Araneae: Nephilidae). J Arachnol 39:399–408. https://doi.org/10.1636/b11-18.1

    Article  Google Scholar 

  27. Iyengar VK, Eisner T (1999) Heritability of body mass, a sexually selected trait, in an arctiid moth (Utetheisa ornatrix). Proc Natl Acad Sci 96:9169–9171. https://doi.org/10.1073/pnas.96.16.9169

    CAS  Article  PubMed  Google Scholar 

  28. Kasumovic MM, Andrade MCB (2009) A change in competitive context reverses sexual selection on male size. J Evol Biol 22:324–333. https://doi.org/10.1111/j.1420-9101.2008.01648.x

    CAS  Article  PubMed  Google Scholar 

  29. Kasumovic MM, Brooks RC (2011) It’s all who you know: the evolution of socially cued anticipatory plasticity as a mating strategy. Q Rev Biol 86:181–197. https://doi.org/10.1086/661119

    Article  PubMed  Google Scholar 

  30. Kasumovic MM, Bruce MJ, Herberstein ME, Andrade MCB (2007) Risky mate search and mate preference in the golden orb-web spider (Nephila plumipes). Behav Ecol 18:189–195. https://doi.org/10.1093/beheco/arl072

    Article  Google Scholar 

  31. Kasumovic MM, Bruce MJ, Herberstein ME, Andrade MCB (2009) Evidence for developmental plasticity in response to demographic variation in nature. Ecology 90:2287–2296. https://doi.org/10.1890/08-1540.1

    Article  PubMed  Google Scholar 

  32. Kleinteich A, Schneider JM (2011) Developmental strategies in an invasive spider: constraints and plasticity. Ecol Entomol 36:82–93. https://doi.org/10.1111/j.1365-2311.2010.01249.x

    Article  Google Scholar 

  33. Kralj-Fišer S, Kuntner M (2012) Eunuchs as better fighters? Naturwissenschaften 99(2):95–101

    Article  Google Scholar 

  34. Kralj-Fišer S, Čelik T, Lokovšek T et al (2014) Development and growth in synanthropic species: plasticity and constraints. Naturwissenschaften 101:565–575. https://doi.org/10.1007/s00114-014-1194-y

    CAS  Article  PubMed  Google Scholar 

  35. Kuntner M (2007) A monograph of Nephilengys, the pantropical “hermit spiders” (Araneae, Nephilidae, Nephilinae). Syst Entomol 32:95–135

    Article  Google Scholar 

  36. Kuntner M, Coddington JA (2020) Sexual size dimorphism: evolution and perils of extreme phenotypes in spiders. Annu Rev Entomol 65:1–24. https://doi.org/10.1146/annurev-ento-011019-025032

    CAS  Article  Google Scholar 

  37. Kuntner M, Elgar MA (2014) Evolution and maintenance of sexual size dimorphism: aligning phylogenetic and experimental evidence. Front Ecol Evol 2:1–8. https://doi.org/10.3389/fevo.2014.00026

    Article  Google Scholar 

  38. Kuntner M, Hamilton CA, Cheng RC et al (2019) Golden orbweavers ignore biological rules: phylogenomic and comparative analyses unravel a complex evolution of sexual size dimorphism. Syst Biol 68:555–572. https://doi.org/10.1093/sysbio/syy082

    Article  PubMed  Google Scholar 

  39. Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest package: Tests in linear mixed effects models. J Stat Softw 82(13):1–26

    Article  Google Scholar 

  40. Mayntz D, Toft S, Vollrath F (2003) Effects of prey quality and availability on the life history of a trap-building predator. Oikos 101:631–638. https://doi.org/10.1034/j.1600-0706.2003.12408.x

    Article  Google Scholar 

  41. Merilä J, Sheldon BC (1999) Genetic architecture of fitness and nonfitness traits: empirical patterns and development of ideas. Heredity (Edinburgh) 83:103–109. https://doi.org/10.1046/j.1365-2540.1999.00585.x

    Article  Google Scholar 

  42. Miller CW (2013) Sexual selection: male–male competition. In: Evolution of behavior, society and humans. Oxford University Press, New York, pp 641–646

  43. Modanu M, Michalik P, Andrade MCB (2013) Mating system does not predict permanent sperm depletion in black widow spiders. Evol Dev 15:205–212. https://doi.org/10.1111/ede.12034

    Article  PubMed  Google Scholar 

  44. Mousseau TA, Roff DA (1989) Adaptation to seasonality in a cricket: patterns of phenotypic and genotypic variation in body size and diapause expression along a cline in season length. Evolution (New York) 43:1483. https://doi.org/10.2307/2409463

    Article  Google Scholar 

  45. Nakagawa S, Schielzeth H, O'Hara RB (2013) A general and simple method for obtaining from generalized linear mixed-effects models. Method Ecol Evol 4(2):133–142

    Article  Google Scholar 

  46. Neumann R, Schneider JM (2015) Differential investment and size-related mating strategies facilitate extreme size variation in contesting male spiders. Anim Behav 101:107–115. https://doi.org/10.1016/j.anbehav.2014.12.027

    Article  Google Scholar 

  47. Neumann R, Schneider JM (2016) Socially cued developmental plasticity in web-building spiders. BMC Evol Biol 16:1–9. https://doi.org/10.1186/s12862-016-0736-7

    Article  Google Scholar 

  48. Neumann R, Ruppel N, Schneider JM (2017) Fitness implications of sex-specific catch-up growth in Nephila senegalensis, a spider with extreme reversed SSD. PeerJ 5:e4050. https://doi.org/10.7717/peerj.4050

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2019) nlme: Linear and nonlinear mixed effects models. R package version 3.1-149

  50. Price T, Schulter D (1991) On the low heritability of life-history traits. Evolution (New York) 45:853. https://doi.org/10.2307/2409693

    Article  Google Scholar 

  51. Prout T, Barker JSF (1989) Ecological aspects of the heritability of body size in Drosophila buzzatii. Genetics 123:803–813

    CAS  Article  Google Scholar 

  52. R Core Team (2018) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.Rproject.org/

  53. Robinson BMH, Lubin YD (1979) Specialists and generalists: the ecology and behavior of some web-building spiders from Papua New Guinea II. Psechrus argentatus and Fecenia sp. (Araneae: Psechridae). Pacif Insects 21:133–164

    Google Scholar 

  54. Robinson MH, Robinson B (1973) Ecology and behavior of the giant wood spider Nephila maculata (Fabricius) in New Guinea. Smithsonian 149:1–75

    Google Scholar 

  55. Robinson MH, Robinson B (1976) The ecology and behavior of Nephila maculata: a supplement. Smithson Contrib Zool 218:1–22. https://doi.org/10.5479/si.00810282.218

    Article  Google Scholar 

  56. Robinson MH, Robinson B (1980) Comparative studies of the courtship and mating behavior of tropical araneid spiders. Q Rev Biol 56:348–349

    Google Scholar 

  57. Roff DA (1992) The evolution of life histories. Chapman and Hall, London

    Google Scholar 

  58. Rowe L, Houle D (1996) The lek paradox and the capture of genetic variance by condition dependent traits. Proc R Soc B Biol Sci 263:1415–1421. https://doi.org/10.1098/rspb.1996.0207

    Article  Google Scholar 

  59. Schneider JM, Elgar MA (2005) The combined effects of pre- and post-insemination sexual selection on extreme variation in male body size. Evol Ecol 19:419–433. https://doi.org/10.1007/s10682-005-8310-6

    Article  Google Scholar 

  60. Schneider J, Fromhage L (2010) Monogynous mating strategies in spiders. In: Kappeler P (ed) Animal behaviour: evolution and mechanisms. Springer International Publishing, Gottingen, pp 441–464

    Google Scholar 

  61. Schuck-Paim C, Alonso WJ (2001) Deciding where to settle: conspecific attraction and web site selection in the orb-web spider Nephilengys cruentata. Anim Behav 62:1007–1012. https://doi.org/10.1006/anbe.2001.1841

    Article  Google Scholar 

  62. Stearns SC (1992) The evolution of life histories. Oxford University Press, Oxford

    Google Scholar 

  63. Steiger S (2013) Bigger mothers are better mothers: disentangling size-related prenatal and postnatal maternal effects. Proc R Soc B Biol Sci. https://doi.org/10.1098/rspb.2013.1225

    Article  Google Scholar 

  64. Stockley P, Seal NJ (2001) Plasticity in reproductive effort of male dung flies (Scatophaga stercoraria) as a response to larval density. Funct Ecol 15:96–102. https://doi.org/10.1046/j.1365-2435.2001.00496.x

    Article  Google Scholar 

  65. Teder T, Vellau H, Tammaru T (2014) Age and size at maturity: a quantitative review of diet-induced reaction norms in insects. Evolution (New York) 68:3217–3228. https://doi.org/10.1111/evo.12518

    Article  Google Scholar 

  66. Tonsor SJ, Elnaccash TW, Scheiner SM (2013) Developmental instability is genetically correlated with phenotypic plasticity, constraining heritability, and fitness. Evolution (New York) 67:2923–2935. https://doi.org/10.1111/evo.12175

    Article  Google Scholar 

  67. Turk E, Kuntner M, Kralj-Fišer S (2018) Cross-sex genetic correlation does not extend to sexual size dimorphism in spiders. Sci Nat. https://doi.org/10.1007/s00114-017-1529-6

    Article  Google Scholar 

  68. Uhl G, Schmitt S, Schäfer MA, Blanckenhorn W (2004) Food and sex-specific growth strategies in a spider. Evol Ecol Res 6:523–540

    Google Scholar 

  69. Vollrath F, Parker GA (1992) Sexual dimorphism and distorted sex ratios in spiders. Nature 360:156–159. https://doi.org/10.1038/360156a0

    Article  Google Scholar 

  70. Wilson AJ, Réale D, Clements MN et al (2010) An ecologist’s guide to the animal model. J Anim Ecol 79:13–26. https://doi.org/10.1111/j.1365-2656.2009.01639.x

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted to the members of the EZ lab who helped to collect, and often tended to the spiders: Matjaž Gregorič, Rok Golobinek, Klemen Čandek, and Tjaša Lokovšek, and we thank Charles Haddad for facilitating the field work. Thanks to Maxime Dahirel for his assistance with the animal model. Special thanks to the editors and two anonymous reviewers for their comments that significantly improved this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shakira G. Quiñones-Lebrón.

Ethics declarations

Conflict of interest

Fieldwork was in agreement with iSimangaliso Wetland Park and Ezemvelo KZN Wildlife, permit num. OP 552/2015. This work was funded by the Slovenian Research Agency, Grants J1-6729, J1-9163, P1-0255, P1-0236, P1-10236. The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Quiñones-Lebrón, S.G., Kuntner, M. & Kralj-Fišer, S. The effect of genetics, diet, and social environment on adult male size in a sexually dimorphic spider. Evol Ecol (2021). https://doi.org/10.1007/s10682-020-10097-3

Download citation

Keywords

  • Developmental plasticity
  • Sexual size dimorphism
  • Sexual selection
  • Nephilingis cruentata
  • Spider
  • Phenotypic variation