Skip to main content

Using full-length metabarcoding and DNA barcoding to infer community assembly for speciose taxonomic groups: a case study

Abstract

How insect communities are assembled in nature remains largely unknown. In particular, whether habitat filtering or competition serves as the main mechanism in forming insect communities is rarely subject to an in-depth investigation. One bottleneck lies in the difficulty of species identification when dealing with a large number of diverse insects. However, high-throughput sequencing technology coupled with classic DNA barcoding offers a great opportunity to infer community assembly for this speciose group. In this study, using 13,909 full-length barcodes obtained by Sanger sequencing or the full-length metabarcoding method (SOAPBarcode), we showed that competition was the main assembly mechanism for the moth communities in the younger Taihang Mountain, while habitat filtering for those in the old Yanshan Mountain. The two sequencing methods showed highly consistent results with regards to both diversity composition and community assembly mechanism. Significant phylogenetic signals and structure suggested that the focal moth communities were the result of the non-neutral assembly process, which was further confirmed by results of neutral assembly test that accounted for immigration and speciation rates. Our study showed that the full-length metabarcoding method can facilitate community assembly inferences, even for speciose taxonomic groups.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Abbott JK, Bedhomme S, Chippindale AK (2010) Sexual conflict in wing size and shape in Drosophila melanogaster. J Evol Biol 23(9):1989–1997

    CAS  PubMed  Google Scholar 

  • Abouheif E (1999) A method for testing the assumption of phylogenetic independence in comparative data. Evol Ecol Res 1:895–909

    Google Scholar 

  • Andújar C, Arribas P, Gray C, Bruce K, Woodward G, Yu DW, Vogler AP (2017) Metabarcoding of freshwater invertebrates to detect the effects of a pesticide spill. Mol Ecol 27(1):146–166

    PubMed  Google Scholar 

  • Azevedo RBR, James AC, Partridge MC (1998) Latitudinal variation of wing: thorax size ratio and wing-aspect ratio in Drosophila melanogaster. Evolution 52(5):1353–1362

    PubMed  Google Scholar 

  • Bell G (2000) The distribution of abundance in neutral communities. Am Nat 155:606–617

    PubMed  Google Scholar 

  • Ben-Moshe A, Dayan T, Simberloff D (2001) Convergence in morphological patterns and community organization between Old and New World rodent guilds. Am Nat 158:484–495

    CAS  PubMed  Google Scholar 

  • Beng KC, Tomlinson KW, Shen XH, Surget-Groba Y, Hughes AC, Corlett RT, Slik JWF (2016) The utility of dna metabarcoding for studying the response of arthropod diversity and composition to land-use change in the tropics. Scientific Reports 6(1):24965

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bista I, Carvalho GR, Tang M, Walsh K, Zhou X, Hajibabaei M, Shokralla S, Seymour M, Bradley D, Liu S, Christmas M, Creer S (2018) Performance of amplicon and shotgun sequencing for accurate biomass estimation in invertebrate community samples. Mol Ecol Resour 18(5):1020–1034

    CAS  Google Scholar 

  • Blomberg SP, Garland T, Ives AR (2003) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57:717

    PubMed  Google Scholar 

  • Braukmann TWA, Ivanova NV, Prosser SWJ, Elbrecht V, Steinke D, Ratnasingham S, de Waard JR, Sones JE, Zakharov EV, Hebert PD (2019) Metabarcoding a diverse arthropod mock community. Mol Ecol Resour. https://doi.org/10.1111/1755-0998.13008

    Article  PubMed  PubMed Central  Google Scholar 

  • Burgar JM, Murray DC, Craig MD, Haile J, Houston J, Stokes V, Bunce M (2014) Who"s for dinner? high-throughput sequencing reveals bat dietary differentiation in a biodiversity hotspot where prey taxonomy is largely undescribed. Mol Ecol 23(15):3605–3617

    PubMed  Google Scholar 

  • Bush A, Monk WA, Compson ZG, Peters DL, Porter TM, Shokralla S, Wright MTG, Hajibabaei M, Baird DJ (2020) DNA metabarcoding reveals metacommunity dynamics in a threatened boreal wetland wilderness. Proc Natl Acad Sci USA 117(15):8539–8545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carroll EL, Gallego R, Sewell MA, Zeldis J, Ranjard L, Ross HA, Tooman LK, O'Rorke R, Newcomb RD, Constantine R (2019) Multi-locus dna metabarcoding of zooplankton communities and scat reveal trophic interactions of a generalist predator. Scientific Reports 9(1):281

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43:783–791

    CAS  PubMed  Google Scholar 

  • Chao A, Chiu CH (2016) Species richness: estimation and comparison. Statistics Reference Online, Wiley StatsRef, pp 1–26

    Google Scholar 

  • Chase JM, Leibold MA (2003) Ecological niches: linking classical and contemporary approaches. University of Chicago Press, Chicago

    Google Scholar 

  • Cho S, Zwick A, Regier JC, Mitter C, Cummings MP, Yao JX, Du Z, Zhao H, Kawahara A, Weller S, Davis DR, Baixeras J, Brown JW, Parr C (2011) Can deliberately incomplete gene sample augmentation improve a phylogeny estimate for the advanced moths and butterflies (hexapoda: lepidoptera)? Syst Biol 60(6):782–796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christophe D, Sébastien G, Simon H (2017) Characterization of bacterial and fungal community dynamics by high-throughput sequencing (HTS) metabarcoding during flax dew-retting. Front Microbiol 8:2052. https://doi.org/10.3389/fmicb.2017.02052

    Article  Google Scholar 

  • Clarke LJ, Soubrier J, Weyrich LS, Cooper A (2014) Environmental metabarcodes for insects: In silico PCR reveals potential for taxonomic bias. Mol Ecol Resour 14:1160–1170

  • Collins RA, Cruickshank RHKnown knowns, known unknowns, unknown unknowns, and unknown knowns in DNA barcoding: a comment on Dowton, et al (2014) Syst Biol 63:1005–1009

    CAS  PubMed  Google Scholar 

  • Connor EF, Simberloff D (1979) The assembly of species communities: chance or competition? Ecology 60:1132–1140

    Google Scholar 

  • Creedy TJ, Norman H, Tang CQ, Chin KQ, Andujar C, Arribas P, O'Connor RS, Carvell C, Notton DG, Volger AP (2019) A validated workflow for rapid taxonomic assignment and monitoring of a national fauna of bees (Apiformes) using high throughput DNA barcoding. Mol Ecol Resour 20(1):40–53

    PubMed  Google Scholar 

  • Dai QY, Gao Q, Wu CS, Chesters D, Zhu CD, Zhang AB (2012) Phylogenetic reconstruction and DNA barcoding for closely related pine moth species (Dendrolimus) in China with multiple gene markers. PLoS ONE 7(4):e32544. https://doi.org/10.1371/journal.pone.0032544

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davis GA, Zheng YD, Wang C, Darby BJ, Zhang CH (2001) Mesozoic tectonic evolution of the Yanshan fold and thrust belt, with emphasis on Hebei and Liaoning provinces, northern China. Paleozoic and Mesozoic Tectonic Evolution of Central Asia: From Continental Assembly to Intracontinental Deformation 194:171–197

    Google Scholar 

  • Deng JF, Su SG, Mo XX, Zhao GC, Xiao QH, Ji GY (2004) The sequence of magmatic-tectonic events and orogenic processes of the Yanshan Belt, North China. Acta Geol Sin-Engl 78:260–266

    Google Scholar 

  • Diaz S, Cabido M, Zak M, Martinez CE, Aranibar J (1999) Plant functional traits, ecosystem structure and land-use history along a climatic gradient in central-western Argentina. J Veg Sci 10:651–660

    Google Scholar 

  • Diaz-Real J, Serrano D, Píriz A, Jovani R (2015) NGS metabarcoding proves successful for quantitative assessment of symbiont abundance: the case of feather mites on birds. Exp Appl Acarol 67(2):209–218

    CAS  PubMed  Google Scholar 

  • Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14(6):927–930

    Google Scholar 

  • Doña J, Serrano D, Mironov S, Montesinos-Navarro A, Jovani R (2019) Unexpected bird–feather mite associations revealed by dna metabarcoding uncovers a dynamic ecoevolutionary scenario. Mol Ecol 28(2):379–390

    PubMed  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    CAS  PubMed  Google Scholar 

  • Elbrecht V, Leese F (2015) Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass-sequence relationships with an innovative metabarcoding protocol. PLoS ONE 10:e0130324. https://doi.org/10.1371/journal.pone.0130324

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Elbrecht V, Peinert B, Leese F (2017) Sorting things out: Assessing effects of unequal specimen biomass on DNA metabarcoding. Ecol and Evol 7:6918–6926. https://doi.org/10.1002/ece3.3192

    Article  Google Scholar 

  • Emerson BC, Gillespie RG (2008) Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol Evol 23:619–630

    PubMed  Google Scholar 

  • Engel MS, Grimaldi DA (2004) New light shed on the oldest insect. Nature 427:627–630

    CAS  PubMed  Google Scholar 

  • Faith DP (1992) Conservation evaluation and phylogenetic diversity. Biol Conserv 61:1–10

    Google Scholar 

  • Felsenstein J (1985) Phylogenies and the comparative method. Am Nat 125:1

    Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from metazoan invertebrates. Molecular Marine Biology Biotechnology 3(5):294–299

    CAS  PubMed  Google Scholar 

  • Garrido-Sanz L, Senar MÀ, Piñol J (2020) Estimation of the relative abundance of species in artificial mixtures of insects using low-coverage shotgun metagenomics. Metabarcoding and Metagenomics 4:e48281

    Google Scholar 

  • Gaston KJ, Chown SL (2005) Neutrality and the niche. Funct Ecol 19:1–6

    Google Scholar 

  • Gilbert B, Lechowicz MJ (2004) Neutrality, niches, and dispersal in a temperate forest understory. P Natl Acad Sci USA 101(20):7651–7656

    CAS  Google Scholar 

  • Gittleman JL, Kot M (1990) Adaptation: Statistics and a null model for estimating phylogenetic effects. Syst Zool 39:227–241

    Google Scholar 

  • Gomez JP, Bravo GA, Brumfield RT, Tello JG, Cadena CD (2010) A phylogenetic approach to disentangling the role of competition and habitat filtering in community assembly of neotropical forest birds. J Anim Ecol 79:1181–1192

    PubMed  Google Scholar 

  • Gotelli NJ (2000) Null model analysis of species co-occurrence patterns. Ecology 81:2606–2621

    Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    PubMed  Google Scholar 

  • Gurd DB (2007) Predicting resource partitioning and community organization of filter-feeding dabbling ducks from functional morphology. Am Nat 169:334–343

    PubMed  Google Scholar 

  • Hahn DA, Denlinger DL (2007) Meeting the energetic demands of insect diapause: nutrient storage and utilization. J Insect Physiol 53(8):760–773

    CAS  PubMed  Google Scholar 

  • Hajibabaei M, Shokralla S, Zhou X, Singer GA, Baird DJ (2011) Environmental barcoding: a next-generation sequencing approach for bio-monitoring applications using river benthos. PLoS ONE 6:e17497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hankin RKS (2007) Introducing untb, an R package for simulating ecological drift under the unified neutral theory of biodiversity. J Stat Softw 22:1–15

    Google Scholar 

  • Hao MD, Jin Q, Meng GL, Yang CQ, Yang SZ, Shi ZY, Tang M, Liu SL, Li YN, Zhang D, Su X, Shih CK, Sun YR, Zhou X (2020) Zhang AB (2020) Regional assemblages shaped by historical and contemporary factors: evidence from a species-rich insect group. Molecular Ecology Mol Ecol 00:1–19

    Google Scholar 

  • Hardy OJ, Sonk B (2004) Spatial pattern analysis of tree species distribution in a tropical rain forest of Cameroon: assessing the role of limited dispersal and niche differentiation. Forest Ecol Manag 197(1):191–202

    Google Scholar 

  • Hebert PD, Ratnasingham S, deWaard JR (2003a) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc Biol Sci 270(Suppl 1):S96–99

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003b) Biological identifications through DNA barcodes. P Roy Soc B-Biol Sci 270:313–321

    CAS  Google Scholar 

  • Hebert PDN, Braukmann TWA, Prosser SWJ, Ratnasingham S, deWaard JR, Ivanova NV, Janzen DH, Hallwachs W, Nail S, Sones JE, Zakharov EV (2018) A sequel to sanger: Amplicon sequencing that scales. BMC Genomics 19(1):219

    PubMed  PubMed Central  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Google Scholar 

  • Hubbell SP (1997) A unified theory of biogeography and relative species abundance and its application to tropical rain forests and coral reefs. Coral Reefs 16:S9–S21

    Google Scholar 

  • Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, New Jersey, USA, pp 3–30

    Google Scholar 

  • Hutchinson GE (1959) Homage to santa rosalia or why are there so many kinds of animals? Am Nat 93:145–159

    Google Scholar 

  • Ivanova NV, deWaard JR, Hebert PDN (2006) An inexpensive, automation-friendly protocol for recovering high-quality DNA. Mol Ecol Notes 6:998–1002

    CAS  Google Scholar 

  • Ji YQ, Ashton L, Pedley SM, Edwards DP, Tang Y, Nakamura A, Kitching R, Dolman PM, Woodcock P, Edwards FA, Larsen TH, Hsu WW, Benedick S, Hamer KC, Wilcove DS, Bruce C, Wang X, Levi T, Lott M, Emerson BC, Yu DW (2013) Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecol Lett 16:1245–1257

    PubMed  Google Scholar 

  • Kawahara AY, Plotkin D, Espeland M, Meusemann K, Toussaint EFA, Donath A, Gimnich F, Frandsen PB, Zwick A, Reis MD, Barber JR, Peters RS, Liu SL, Zhou X, Mayer C, Podsiadlowski L, Storer C, Yack JE, Misof B, Breinholt JW (2019) Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. P Natl A Sci India B 116(45):22657–22663. https://doi.org/10.1073/pnas.1907847116

    CAS  Article  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649

    PubMed  PubMed Central  Google Scholar 

  • Kembel SW (2009) Disentangling niche and neutral influences on community assembly: assessing the performance of community phylogenetic structure tests. Ecol Lett 12:949–960

    PubMed  Google Scholar 

  • Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO (2010) Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464

    CAS  PubMed  Google Scholar 

  • Kooyman R, Rossetto M, Cornwell W, Westoby M (2011) Phylogenetic tests of community assembly across regional to continental scales in tropical and subtropical rain forests. Global Ecol Biogeogr 20:707–716

    Google Scholar 

  • Kraft NJB, Ackerly DD (2010) Functional trait and phylogenetic tests of community assembly across spatial scales in an Amazonian forest. Ecol Monogr 80:401–422

    Google Scholar 

  • Kraft NJB, Cornwell WK, Webb CO, Ackerly DD (2007) Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am Nat 170:271–283

    PubMed  Google Scholar 

  • Lamouroux N, Doledec S, Gayraud S (2004) Biological traits of stream macroinvertebrate communities: effects of microhabitat, reach, and basin filters. J N Am Benthol Soc 23:449–466

    Google Scholar 

  • Latombe G, Hui C, McGeoch MA (2015) Beyond the continuum: a multi-dimensional phase space for neutral-niche community assembly. P Roy Soc B-Biol Sci 282:20152417

    Google Scholar 

  • Leibold MA, Economo EP, Peresneto P (2010) Metacommunity phylogenetics: separating the roles of environmental filters and historical biogeography. Ecol Lett 13:1290–1299

    PubMed  Google Scholar 

  • Leray M, Knowlton N (2015) Dna barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. Proc Natl Acad Sci USA 112(7):2076–2081

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lessard JP, Fordyce JA, Gotelli NJ, Sanders NJ (2009) Invasive ants alter the phylogenetic structure of ant communities. Ecology 90:2664

    PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Li Y, Lu J, Su X, Tang M, Zhang R, Zhou L, Zhou C, Yang Q, Ji Y (2013) SOAPBarcode: revealing arthropod biodiversity through assembly of Illumina shotgun sequences of PCR amplicons. Methods Ecol Evol 4:1142–1150

    Google Scholar 

  • Liu BH, Yuan JY, Yiu SM, Li ZY, Xie YL, Chen YX, Shi YJ, Zhang H, Li YR, Lam TW, Luo RB (2012) Cope: an accurate k-mer-based pair-end reads connection tool to facilitate genome assembly. Bioinformatics 22:22

    Google Scholar 

  • Liu S, Yang C, Zhou C, Zhou X (2017) Filling reference gaps via assembling DNA barcodes using high-throughput sequencing-moving toward barcoding the world. GigaScience 6(12):1–8.

  • Magurran A E, McGill B J (2011) Biological diversity: frontiers in measurement and assessment, pp. 1–345. Oxford University Press, New York

  • Maherali H, Klironomos JN (2012) Phylogenetic and trait-based assembly of arbuscular mycorrhizal fungal communities. PLoS ONE 7:e36695. https://doi.org/10.1371/journal.pone.0036695

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Marec F (2011) Genetic control of pest Lepidoptera: construction of a balanced lethal strain in Ephestia kuehniella. Entomol Exp Appl 61(3):271–283

    Google Scholar 

  • Marion ZH, Fordyce JA, Fitzpatrick BM (2017) Pairwise beta diversity resolves an underappreciated source of confusion in calculating species turnover. Ecology 98(4):933–939. https://doi.org/10.1002/ecy.1753/suppinfo

    Article  PubMed  Google Scholar 

  • Martins EP, Hansen TF (1997) Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am Nat 149:646–667

    Google Scholar 

  • McCarthy C (1997) Chromas computer program, Version 1.43. Brisbane, Queensland, Australia

  • Meier R, Wong W, Srivathsan A, Foo M (2016) $1 dna barcodes for reconstructing complex phenomes and finding rare species in specimen-rich samples. Cladistics 32:100–110

    PubMed  Google Scholar 

  • Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, Frandsen PB, Ware J, Flouri T, Beutel RG, Niehuis O, Petersen M, Izquierdo-Carrasco F, Wappler T, Rust J, Aberer AJ, Aspöck U, Aspöck H, Bartel D, Blanke A, Berger S, Böhm A, Buckley TR, Calcott B, Chen J, Friedrich F, Fukui M, Fujita M, Greve C, Grobe P, Gu S, Huang Y, Jermiin LS, Kawahara AY, Krogmann L, Kubiak M, Lanfear R, Letsch H, Li Y, Li Z, Li J, Lu H, Machida R, Mashimo Y, Kapli P, McKenna DD, Meng G, Nakagaki Y, Navarrete-Heredia JL, Ott M, Ou Y, Pass G, Podsiadlowski L, Pohl H, von Reumont BM, Schütte K, Sekiya K, Shimizu S, Slipinski A, Stamatakis A, Song W, Su X, Szucsich NU, Tan M, Tan X, Tang M, Tang J, Timelthaler G, Tomizuka S, Trautwein M, Tong X, Uchifune T, Walzl MG, Wiegmann BM, Wilbrandt J, Wipfler B, Wong TK, Wu Q, Wu G, Xie Y, Yang S, Yang Q, Yeates DK, Yoshizawa K, Zhang Q, Zhang R, Zhang W, Zhang Y, Zhao J, Zhou C, Zhou L, Ziesmann T, Zou S, Li Y, Xu X, Zhang Y, Yang H, Wang J, Wang J, Kjer KM, Zhou X (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767

    CAS  PubMed  Google Scholar 

  • Mittelbach GG, Schemske DW (2015) Ecological and evolutionary perspectives on community assembly. Trends Ecol Evol 30:241–247

    PubMed  Google Scholar 

  • Mitter C, Davis DR, Cummings MP (2017) Phylogeny and evolution of lepidoptera. Annu Rev Entomol 62(1), annurev-ento-031616–035125

  • Münkemüller T, Lavergne S, Bzeznik B, Dray S, Jombart T, Schiffers K, Thuiller W (2012) How to measure and test phylogenetic signal. Methods Ecol Evol 3:743–756

    Google Scholar 

  • Munoz F, Couteron P, Ramesh BR (2008) Beta diversity in spatially implicit neutral models: a new way to assess species migration. Am Nat 172:116–127

    PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, O’hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2010) Vegan: community ecology package. R package version 1.17–4. URL https://CRAN.R-project.org/package=vegan

  • Poff NL, Olden JD, Vieira NKM, Finn DS, Simmons MP, Kondratieff BC (2006) Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. J N Am Benthol Soc 25:730–755

    Google Scholar 

  • Posada D (2006) Modeltest server: a web-based tool for the statistical selection of models of nucleotide substitution online. Nucleic Acids Res 34:W700–W703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    CAS  PubMed  Google Scholar 

  • R Core Team (2018) R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https:// www.R-project.org/

  • Reed SC, Williams CM, Chadwick LE (1942) Frequency of wing-beat as a character for separating species races and geographic varieties of Drosophila. Genetics 27:349–361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Revell LJ, Harmon LJ, Collar DC (2008) Phylogenetic signal, evolutionary process, and rate. Syst Biol 57(4):591–601

    PubMed  Google Scholar 

  • Roos MC, Keßler PJA, Gradstein SR, Baas GP (2004) Species diversity and endemism of five major malesian islands: diversity-area relationships. J Biogeogr 31(12):1893–1908

    Google Scholar 

  • Sargent RD, Kembel SW, Emery NC, Forrestel EJ, Ackerly DD (2011) Effect of local community phylogenetic structure on pollen limitation in an obligately insect-pollinated plant. Am J Bot 98:283–289

    PubMed  Google Scholar 

  • Schenk J, Geisen S, Kleinboelting N, Traunspurger W (2019) Metabarcoding data allow for reliable biomass estimates in the most abundant animals on earth. 3: e46704

  • Shafquat A, Joice R, Simmons SL, Huttenhower C (2014) Functional and phylogenetic assembly of microbial communities in the human microbiome. Trends Microbiol 22:261–266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi ZY, Yang CQ, Hao MD, Wang XY, Ward RD, Zhang AB (2018) FuzzyID2: A software package for large data set species identification via barcoding and metabarcoding using hidden Markov models and fuzzy set methods. Mol Ecol Resour 18(3):666–675

    CAS  PubMed  Google Scholar 

  • Smith MA, Fisher BL, Hebert PD (2015) DNA barcoding for effective biodiversity assessment of a hyperdiverse arthropod group: the ants of Madagascar. Philos T R Soc B 360(1462):1825–1834

    Google Scholar 

  • Smith MA, Rodriguez JJ, Whitfield JB, Deans AR, Janzen DH, Hallwachs W, Hebert PD (2008) Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, dna barcoding, morphology, and collections. Proc Natl Acad Sci U S A 105(34):12359–12364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Souza AF, Bezerra AD, Longhi SJ (2016) Quasi-neutral community assembly: evidence from niche overlap, phylogenetic, and trait distribution analyses of a subtropical forest in South America. Perspect Plant Ecol 23:1–10

    Google Scholar 

  • Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    CAS  PubMed  Google Scholar 

  • Swenson NG, Enquist BJ (2009) Opposing assembly mechanisms in a neotropical dry forest: implications for phylogenetic and functional community ecology. Ecology 90:2161–2170

    PubMed  Google Scholar 

  • Swenson NG, Enquist BJ, Pither J, Thompson J, Zimmerman JK (2006) The problem and promise of scale dependency in community phylogenetics. Ecology 87(10):2418–2424

    PubMed  Google Scholar 

  • Taberlet P, Coissac E, Pompanon F, Brochmann C, Willerslev E (2012) Towards next-generation biodiversity assessment using dna metabarcoding. Mol Ecol 21(8):2045–2050

  • Tang M, Tan MH, Meng GL, Yang SZ, Su X, Liu SL, Song WH, Li YY, Wu Q, Zhang AB, Zhou X (2014) Multiplex sequencing of pooled mitochondrial genomes: a crucial step toward biodiversity analysis using mito-metagenomics. Nucleic Acids Res 22:22

    Google Scholar 

  • Tang M, Hardman CJ, Ji YQ, Meng GL, Liu SL, Tan MH, Yang SZ, Moss ED, Wang JX, Yang CX (2015) High-throughput monitoring of wild bee diversity and abundance via mitogenomics. Methods Ecol Evol 6:1034–1043

    PubMed  PubMed Central  Google Scholar 

  • Tedersoo L, Tooming-Klunderud A, Anslan S (2018) PacBio metabarcoding of Fungi and other eukaryotes: Errors, biases, and perspectives. New Phytol 217:1370–1385. https://doi.org/10.1111/nph.14776

    CAS  Article  PubMed  Google Scholar 

  • Vamosi JC, Vamosi SM (2007) Body size, rarity, and phylogenetic community structure: insights from diving beetle assemblages of Alberta. Divers Distrib 13:1–10

    Google Scholar 

  • Venail PA, Kaltz O, Olivieri I, Pommier T, Mouquet N (2011) Diversification in temporally heterogeneous environments: effect of the grain in experimental bacterial populations. J Evol Biol 24:2485–2495

    CAS  PubMed  Google Scholar 

  • Webb CO (2000) Exploring the phylogenetic structure of ecological communities: an example for rain forest trees. Am Nat 156:145–155

    PubMed  Google Scholar 

  • Webb CO, Ackerly DD, Kembel SW (2008) Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24:2098–2100

    CAS  PubMed  Google Scholar 

  • Webb CO, Ackerly DD, McPeek MA, Donoghue MJ (2002) Phylogenies and community ecology. Annu Rev Ecol Syst 33:475–505

    Google Scholar 

  • Weiher E, Keddy P (2001) Ecological assembly rules: perspectives, advances, retreats. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Weisfogh T (1973) Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J Exp Biol 59:169–230

    Google Scholar 

  • Whitfield J (2002) Ecology: neutrality versus the niche. Nature 417(6888):480–481

    CAS  PubMed  Google Scholar 

  • Wilson JJ (2010) Assessing the value of DNA barcodes and other priority gene regions for molecular phylogenetics of Lepidoptera. PLoS ONE 55:e10525

    Google Scholar 

  • Yang CT, Tan SJ, Meng GL, Bourne D, O'Brien P, Xu JQ, Sha L, Chen A, Chen XW, Liu SL (2018) Access COI barcode efficiently using high throughput Single End 400 bp sequencing: https://doi.org/10.1101/498618

  • Yeo D, Srivathsan A, Meier R (2020) Longer is not always better: Optimizing barcode length for large-scale species discovery and identification. Syst Biol. https://doi.org/10.1093/sysbio/syaa014

    Article  PubMed  Google Scholar 

  • Yu DW, Ji Y, Emerson BC, Wang X, Ye C, Yang C, Ding Z (2012) Biodiversity soup: metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring. Methods Ecol Evol 3:613–623

    Google Scholar 

  • Zhang AB, Hao MD, Yang CQ, Shi ZY (2017) BarcodingR: an integrated R package for species identification using DNA barcodes. Methods Ecol Evol 8:627–634

    Google Scholar 

  • Zhang K, Lin SL, Ji YQ, Yang CX, Wang XY, Yang CY, Wang HS, Jiang HS, Harrison RD, Yu DW (2016) Plant diversity accurately predicts insect diversity in two tropical landscapes. Mol Ecol 25(17):4407–4419

    PubMed  Google Scholar 

  • Zhang AB, Sikes DS, Muster C, Li SQ (2008) Inferring species membership using DNA sequences with back-propagation neural networks. Syst Biol 57:202–215

    CAS  PubMed  Google Scholar 

  • Zhang XM, Shi ZY, Zhang SQ, Zhang P, Wilson JJ, Shih CK, Li J, Li XD, Yu GY, Zhang AB (2020) Plant-herbivorous insect networks: who is eating what revealed by long-barcodes using high-throughput sequencing and Trinity assembly. Insect Sci 00:1–17. https://doi.org/10.1111/1744-7917.12749

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the constructive comments from Prof. Melodie A. McGeoch of Monash University, Australia, on an earlier version of the manuscript.

Funding

This work was supported by Natural Science Foundation of China (31772501, 31272340, 31401121 and 31601877), China National Funds for Distinguished Young Scientists (31425023), the Chinese Universities Scientific Fund (2017QC114), Program for Changjiang Scholars and Innovative Research Team in University (IRT_17R75), Support Project of High-level Teachers in Beijing Municipal Universities (grant number IDHT20180518) and Academy for Multidisciplinary Studies, Capital Normal University to Ai-bing ZHANG, and Natural Science Foundation of China (31772493) to Xin Zhou.

Author information

Authors and Affiliations

Authors

Contributions

A.B.Z. and X.Z. designed the study, M.D.H., Q.J., G.L.M., S.Z.Y., Z.Y.S. and C.Q.Y. performed the research, M.T., S.L.L. and X.S. performed part data analysis, Z.Y.S., J.J.W., C.S. and J.L. analyzed output data, Y.N.L., D.Z., C.Q.Y., M.D.H. Y.R.S. built DNA barcoding library, M.D.H., Q.J. and G.L.M. wrote the first draft of the manuscript, and all authors contributed substantially to revisions. No authors have any financial conflicts associated with this work.

Corresponding authors

Correspondence to Xin Zhou or Aibing Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1528 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hao, M., Jin, Q., Meng, G. et al. Using full-length metabarcoding and DNA barcoding to infer community assembly for speciose taxonomic groups: a case study. Evol Ecol 34, 1063–1088 (2020). https://doi.org/10.1007/s10682-020-10072-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-020-10072-y

Keywords

  • Lepidoptera
  • Neutral assembly
  • Phylogenetic signal
  • Competition
  • Habitat filtering
  • Metabarcoding