Warning signal plasticity in hibiscus harlequin bugs

Abstract

Color variation in aposematic (conspicuous and defended) prey should be suppressed by frequency-based selection by predators. However selection of color traits is confounded by the fact that coloration also plays an important role in many biological processes, and warning coloration may be constrained by biotic or abotic factors. Temperature, in particular the importance of thermoregulation, has been suggested as the source of much of the geographical variation in warning coloration we see in natural populations. Differential selection in different thermal environments may lead to developmentally canalized or ‘fixed’ differences between populations. Conversely, inter-population differences may be due to phenotypic plasticity, wherein trait expression is modified by environmental conditions. The hibiscus harlequin bug Tectocoris diophthalmus (Heteroptera: Scutelleridae), is a shieldback bug, with iridescent patches that show size variation between individuals, as well as inter-population variation with geographic patterning. This study aimed to identify environmental factors that drive the expression of this variable trait, using surveys, modeling, and experimental approaches. Surveys were taken at sites throughout Australia in three climate regions (tropical, subtropical, and temperate) at different time periods, and results were modeled with a multilevel ordinal regression. We tested for correlations between colouration and several biotic (density, host plant) and abiotic (temperature, rainfall) factors. We found strong phenotypic plasticity with respect to temperature and rainfall. Higher temperatures and increased rainfall were related to suppressed iridescence. A factorial experiment with tropical and temperate bugs in two climate-typical temperature regimes confirmed phenotypic plasticity in response to temperature, likely due to temperature sensitivity in melanin expression. Tropical and temperate populations showed striking differences between plasticity reaction norms, suggesting local evolution on the shape of phenotypic plasticity. We suggest that studying both biotic and abiotic selection pressures is important for understanding the causes of inter-population variation in aposematic signals.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Akaike H (1974) A new look at the statistical model identification. In: Parzen E, Tanabe K, Kitagawa G (eds) Selected papers of Hirotugu Akaike. Springer Series in Statistics (Perspectives in Statistics). Springer, New York

    Google Scholar 

  2. Aldrich JR (1986) Seasonal variation of black pigmentation under the wings in a true bug (Hemiptera: Pentatomidae): a laboratory and field study. Proc Entomol Soc Wash 88(3):409–421

    Google Scholar 

  3. Azevedo RB, James AC, McCabe J, Partridge L (1998) Latitudinal variation of wing: thorax size ratio and wing-aspect ratio in Drosophila melanogaster. Evolution 52:1353–1362

    PubMed  Google Scholar 

  4. Ballard E (1927) Some insects associated with cotton in papua and the mandated territory of New Guinea. Bull Entomol Res 17(3):295–300

    Article  Google Scholar 

  5. Ballard E, Holdaway FG (1926) The life-history of Tectocoris lineola, F., and its connection with internal Boll Rots in Queensland. Bull Entomol Res 16(4):329–346

    Article  Google Scholar 

  6. Barnes AI, Siva-Jothy MT (2000) Density–dependent prophylaxis in the mealworm beetle Tenebrio molitor L. (Coleoptera: Tenebrionidae): cuticular melanization is an indicator of investment in immunity. Proc Biol Sci 267(1439):177–182

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Bezzerides A, McGraw K, Parker R, Husseini J (2007) Elytra color as a signal of chemical defense in the Asian ladybird beetle Harmonia axyridis. Behav Ecol Sociobiol 61(9):1401–1408. https://doi.org/10.1007/s00265-007-0371-9

    Article  Google Scholar 

  8. Boughman JW (2002) How sensory drive can promote speciation. Trends Ecol Evol 17(12):571–577. https://doi.org/10.1016/S0169-5347(02)02595-8

    Article  Google Scholar 

  9. Burghardt F, Proksch P, Fiedler K (2001) Flavonoid sequestration by the common blue butterfly Polyommatus icarus: quantitative intraspecific variation in relation to larval hostplant, sex and body size. Biochem Syst Ecol 29(9):875–889. https://doi.org/10.1016/S0305-1978(01)00036-9

    CAS  Article  PubMed  Google Scholar 

  10. Cassis G, Vanags L (2006) Jewel Bugs of Australia (Insecta, Heteroptera, Scutelleridae). Denisia 19:275–398

    Google Scholar 

  11. Christensen RHB (2010) Ordinal Regression models for ordinal data. CRAN

  12. Cotter S, Hails R, Cory JS, Wilson K (2004) Density-dependent prophylaxis and condition-dependent immune function in Lepidopteran larvae: a multivariate approach. J Anim Ecol 73(2):283–293

    Article  Google Scholar 

  13. David J, Capy P, Payant V, Tsakas S (1985) Thoracic trident pigmentation in Drosophila melanogaster: differentiation of geographical populations. Genet Sel Evol 17(2):211–224

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. David JR, Capy P, Gauthier J-P (1990) Abdominal pigmentation and growth temperature in Drosophila melanogaster: similarities and differences in the norms of reaction of successive segments. J Evol Biol 3(5–6):429–445. https://doi.org/10.1046/j.1420-9101.1990.3050429.x

    Article  Google Scholar 

  15. Davis ALV, Brink DJ, Scholtz CH, Prinsloo LC, Deschodt CM (2008) Functional implications of temperature-correlated colour polymorphism in an iridescent, scarabaeine dung beetle. Ecol Entomol 33(6):771–779. https://doi.org/10.1111/j.1365-2311.2008.01033.x

    Article  Google Scholar 

  16. Dearn JM (1981) Latitudinal cline in a colour pattern polymorphism in the Australian grasshopper Phaulacridium vittatum. Heredity 47(1):111–119

    Article  Google Scholar 

  17. Debat V, David P (2001) Mapping phenotypes: canalization, plasticity and developmental stability. Trends Ecol Evol 16(10):555–561. https://doi.org/10.1016/S0169-5347(01)02266-2

    Article  Google Scholar 

  18. Doucet SM, Meadows MG (2009) Iridescence: a functional perspective. J R Soc Interface 6(Suppl 2):S115–S132

    Article  PubMed  PubMed Central  Google Scholar 

  19. Endler JA, Mappes J (2004) Predator mixes and the conspicuousness of aposematic signals. Am Nat 163(4):532–547

    Article  PubMed  Google Scholar 

  20. Fabricant SA, Herberstein ME (2014) Hidden in plain orange: aposematic coloration is cryptic to a colorblind insect predator. Behav Ecol 26(1):38–44. https://doi.org/10.1093/beheco/aru157

    Article  Google Scholar 

  21. Fabricant SA, Smith CL (2014) Is the hibiscus harlequin bug aposematic? The importance of testing multiple predators. Ecol Evol 4(2):113–120

    Article  PubMed  Google Scholar 

  22. Fabricant SA, Kemp DJ, Krajíček J, Bosáková Z, Herberstein ME (2013) Mechanisms of color production in a highly variable shield-back stinkbug, Tectocoris diopthalmus (Heteroptera: Scutelleridae), and why it matters. PLoS ONE 8(5):e64082. https://doi.org/10.1371/journal.pone.0064082

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Fabricant SA, Exnerová A, Ježová D, Štys P (2014) Scared by shiny? The value of iridescence in aposematic signalling of the hibiscus harlequin bug. Anim Behav 90:315–325. https://doi.org/10.1016/j.anbehav.2014.01.021

    Article  Google Scholar 

  24. Falconer DS (1990) Selection in different environments: effects on environmental sensitivity (reaction norm) and on mean performance. Genet Res 56(01):57–70. https://doi.org/10.1017/S0016672300028883

    Article  Google Scholar 

  25. Friman V-P, Lindstedt C, Hiltunen T, Laakso J, Mappes J (2009) Predation on multiple trophic levels shapes the evolution of pathogen virulence. PLoS ONE 4(8):e6761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fusco G, Minelli A (2010) Phenotypic plasticity in development and evolution: facts and concepts. Philos Trans R Soc Lond B Biol Sci 365(1540):547–556. https://doi.org/10.1098/rstb.2009.0267

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gavrilets S, Scheiner SM (1993a) The genetics of phenotypic plasticity. V. Evolution of reaction norm shape. J Evol Biol 6(1):31–48. https://doi.org/10.1046/j.1420-9101.1993.6010031.x

    Article  Google Scholar 

  28. Gavrilets S, Scheiner SM (1993b) The genetics of phenotypic plasticity. VI. Theoretical predictions for directional selection. J Evol Biol 6(1):49–68. https://doi.org/10.1046/j.1420-9101.1993.6010049.x

    Article  Google Scholar 

  29. Gibert JM, Peronnet F, Schlötterer C (2007) Phenotypic plasticity in Drosophila pigmentation caused by temperature sensitivity of a chromatin regulator network. PLoS Genet 3(2):e30. https://doi.org/10.1371/journal.pgen.0030030

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Giffney RA, Kemp DJ (2014) Does it pay to care? Exploring the costs and benefits of parental care in the hibiscus harlequin bug Tectocoris diophthalmus (Heteroptera: Scutelleridae). Ethology 120:1–9

    Article  Google Scholar 

  31. Greenwood JJD, Cotton PA, Wilson DM (1989) Frequency-dependent selection on aposematic prey: some experiments. Biol J Linn Soc 36(1–2):213–226. https://doi.org/10.1111/j.1095-8312.1989.tb00491.x

    Article  Google Scholar 

  32. Gunn A (1998) The determination of larval phase coloration in the African armyworm, Spodoptera exempta and its consequences for thermoregulation and protection from UV light. Entomol Exp Appl 86(2):125–133. https://doi.org/10.1046/j.1570-7458.1998.00273.x

    Article  Google Scholar 

  33. Heal JR (1989) Variation and seasonal changes in hoverfly species: interactions between temperature, age and genotype. Biol J Linn Soc 36(3):251–269. https://doi.org/10.1111/j.1095-8312.1989.tb00493.x

    Article  Google Scholar 

  34. Hedeker D, Gibbons RD (1994) A random-effects ordinal regression model for multilevel analysis. Biometrics 50(4):933–944. https://doi.org/10.2307/2533433

    CAS  Article  PubMed  Google Scholar 

  35. Holloway G, Marriott C, Crocker HJ (1997) Phenotypic plasticity in hoverflies: the relationship between colour pattern and season in Episyrphus balteatus and other Syrphidae. Ecol Entomol 22(4):425–432. https://doi.org/10.1046/j.1365-2311.1997.00096.x

    Article  Google Scholar 

  36. Jablonski NG, Chaplin G (2000) The evolution of human skin coloration. J Hum Evol 39(1):57–106. https://doi.org/10.1006/jhev.2000.0403

    CAS  Article  PubMed  Google Scholar 

  37. Jenkins NL, Hoffmann AA (2000) Variation in morphological traits and trait asymmetry in field Drosophila serrata from marginal populations. J Evol Biol 13(1):113–130. https://doi.org/10.1046/j.1420-9101.2000.00149.x

    Article  Google Scholar 

  38. Johansen AI, Exnerová A, Hotová Svádová K, Štys P, Gamberale-Stille G, Tullberg BS (2010) Adaptive change in protective coloration in adult striated shieldbugs Graphosoma lineatum (Heteroptera: Pentatomidae): Test of detectability of two colour forms by avian predators. Ecol Entomol 35(5):602–610

    Article  Google Scholar 

  39. Keller LA (2012) I’m sexy and I know it: Using a harlequin bug to investigate the link between the design and display of iridescent traits. Dissertation, Macquarie University

  40. Liefting M, Hoffmann AA, Ellers J (2009) Plasticity versus environmental canalization: Population differences in thermal responses along a lattitudinal gradient in Drosophila serrata. Evolution 63(8):1954–1963. https://doi.org/10.1111/j.1558-5646.2009.00683.x

    Article  PubMed  Google Scholar 

  41. Lindstedt C, Lindström L, Mappes J (2009) Thermoregulation constrains effective warning signal expression. Evolution 63(2):469–478. https://doi.org/10.1111/j.1558-5646.2008.00561.x

    Article  PubMed  Google Scholar 

  42. Lindstedt C, Eager H, Ihalainen E, Kahilainen A, Stevens M, Mappes J (2011) Direction and strength of selection by predators for the color of the aposematic wood tiger moth. Behav Ecol 22(3):580–587. https://doi.org/10.1093/beheco/arr017

    Article  Google Scholar 

  43. Lindström L, Alatalo RV, Lyytinen A, Mappes J (2001) Strong antiapostatic selection against novel rare aposematic prey. Proc Nat Acad Sci USA 98(16):9181–9184. https://doi.org/10.1073/pnas.161071598

    Article  PubMed  Google Scholar 

  44. Maan ME, Cummings ME (2009) Sexual dimorphism and directional sexual selection on aposematic signals in a poison frog. Proc Nat Acad Sci USA 106(45):19072–19077. https://doi.org/10.1073/pnas.0903327106

    Article  PubMed  Google Scholar 

  45. Mochida K (2011) Combination of local selection pressures drives diversity in aposematic signals. Evol Ecol 25(5):1017–1028. https://doi.org/10.1007/s10682-011-9471-0

    Article  Google Scholar 

  46. Molina-Montenegro MA, Naya DE (2012) Latitudinal patterns in phenotypic plasticity and fitness-related traits: assessing the climatic variability hypothesis (CVH) with an invasive plant species. PLoS ONE 7(10):e47620. https://doi.org/10.1371/journal.pone.0047620

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Nadeau NJ (2016) Genes controlling mimetic colour pattern variation in butterflies. Curr Opin Insect Sci 17:24–31. https://doi.org/10.1016/j.cois.2016.05.013

    Article  PubMed  Google Scholar 

  48. Nappi AJ, Christensen BM (2005) Melanogenesis and associated cytotoxic reactions: applications to insect innate immunity. Insect Biochem Mol Biol 35(5):443–459. https://doi.org/10.1016/j.ibmb.2005.01.014

    CAS  Article  PubMed  Google Scholar 

  49. Nice CC, Fordyce JA (2006) How caterpillars avoid overheating: behavioral and phenotypic plasticity of pipevine swallowtail larvae. Oecologia 146(4):541–548

    Article  PubMed  Google Scholar 

  50. Nokelainen O, Lindstedt C, Mappes J (2013) Environment-mediated morph-linked immune and life-history responses in the aposematic wood tiger moth. J Anim Ecol 82:653–662

    Article  PubMed  Google Scholar 

  51. Oda K-I, Ishii M (1998) Factors affecting adult color polymorphism in the meadow grasshopper, Conocephalus maculatus (Orthoptera: Tettigoniidae). Appl Entomol Zool 33:455–460

    Article  Google Scholar 

  52. Ojala K, Lindstrom L, Mappes J (2007) Life-history constraints and warning signal expression in an arctiid moth. Funct Ecol 21:1162–1167. https://doi.org/10.1111/j.1365-2435.2007.01322.x

    Article  Google Scholar 

  53. Otaki JM (2008) Phenotypic plasticity of wing color patterns revealed by temperature and chemical applications in a nymphalid butterfly Vanessa indica. J Ther Biol 33(2):128–139. https://doi.org/10.1016/j.jtherbio.2007.11.004

    CAS  Article  Google Scholar 

  54. Ottenheim MM, Volmer AD, Holloway GJ (1996) The genetics of phenotypic plasticity in adult abdominal colour pattern of Eristalis arbustorum (Diptera: Syrphidae). Heredity 77(5):493

    Article  Google Scholar 

  55. Pellissier L, Wassef J, Bilat J, Brazzola G, Buri P, Colliard C, Fournier B, Hausser J, Yannic G, Perrin N (2011) Adaptive colour polymorphism of Acrida ungarica H. (Orthoptera: Acrididae) in a spatially heterogeneous environment. Acta Oecol 37(2):93–98. https://doi.org/10.1016/j.actao.2010.12.003

    Article  Google Scholar 

  56. Pener MP, Simpson SJ (2009) Locust phase polyphenism: an update. Adv Insect Physiol 36:1–272. https://doi.org/10.1016/s0065-2806(08)36001-9

    Article  Google Scholar 

  57. Rapoport EH (1969) Gloger’s rule and pigmentation of Collembola. Evolution 23(4):622–626

    CAS  Article  PubMed  Google Scholar 

  58. Roskam JC, Brakefield PM (1996) A Comparison of temperature-induced polyphenism in African Bicylus butterflies from a seasonal Savannah-rainforest ecotone. Evolution 50(6):2360–2372. https://doi.org/10.2307/2410705

    CAS  Article  PubMed  Google Scholar 

  59. Ruxton GD, Sherratt TN, Speed MP (2004) Avoiding attack: the evolutionary ecology of crypsis, warning signals and mimicry. Oxford University Press, USA

    Google Scholar 

  60. Schultz TD, Hadley NF (1987) Structural colors of tiger beetles and their role in heat transfer through the integument. Physiological Zoology 60(6):737–745

    Article  Google Scholar 

  61. Seago AE, Brady P, Vigneron J-P, Schultz TD (2009) Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera). J R Soc Interface 6(Suppl 2):S165–S184. https://doi.org/10.1098/rsif.2008.0354.focus

    Article  PubMed  Google Scholar 

  62. Solensky MJ, Larkin E (2003) Temperature-induced variation in larval coloration in Danaus plexippus (Lepidoptera: Nymphalidae). Ann Entomol Soc Am 96(3):211–216. https://doi.org/10.1603/0013-8746(2003)096[0211:tvilci]2.0.co;2

    Article  Google Scholar 

  63. St. Leger RJ, Cooper RJ, Charnley AK (1988) The effect of melanization of Manduca sexta cuticle on growth and infection by Metarhizium anisopliae. J Invertebr Pathol 52(3):459–470. https://doi.org/10.1016/0022-2011(88)90059-6

    Article  Google Scholar 

  64. Stearns SC (2002) Progress on canalization. Proc Nat Acad Sci USA 99(16):10229–10230. https://doi.org/10.1073/pnas.172388999

    CAS  Article  PubMed  Google Scholar 

  65. Stevens M, Ruxton GD (2012) Linking the evolution and form of warning coloration in nature. Proc Biol Sci 279(1728):417–426. https://doi.org/10.1098/rspb.2011.1932

    Article  PubMed  Google Scholar 

  66. Stoehr AM (2010) Responses of disparate phenotypically-plastic, melanin-based traits to common cues: limits to the benefits of adaptive plasticity? Evol Ecol 24(2):287–298. https://doi.org/10.1007/s10682-009-9306-4

    Article  Google Scholar 

  67. Sword GA (1999) Density-dependent warning coloration. Nature 397(6716):217

    CAS  Article  Google Scholar 

  68. Sword GA (2002) A role for phenotypic plasticity in the evolution of aposematism. Proc Biol Sci 269(1501):1639–1644. https://doi.org/10.1098/rspb.2002.2060

    Article  PubMed  PubMed Central  Google Scholar 

  69. Telonis-Scott M, Hoffmann AA, Sgrò CM (2011) The molecular genetics of clinal variation: a case study of ebony and thoracic trident pigmentation in Drosophila melanogaster from eastern Australia. Mol Ecol 20(10):2100–2110

    Article  PubMed  Google Scholar 

  70. Thery M, Gomez D (2010) Insect colours and visual appearance in the eyes of their predators. Adv Insect Phys 38:267–353. https://doi.org/10.1016/s0065-2806(10)38001-5

    Article  Google Scholar 

  71. Tullberg BS, Gamberale-Stille G, Bohlin T, Merilaita S (2008) Behav Ecol Sociobiol 62:1389. https://doi.org/10.1007/s00265-008-0567-7

    Article  Google Scholar 

  72. Umbers KD, Herberstein ME, Madin JS (2013) Colour in insect thermoregulation: empirical and theoretical tests in the colour-changing grasshopper, Kosciuscola tristis. J Insect Physiol 57(1):81–90

    Article  CAS  Google Scholar 

  73. Umbers KD, Fabricant SA, Gawryszewski FM, Seago AE, Herberstein ME (2014) Reversible colour change in Arthropoda. Biol Rev 89:820–848. https://doi.org/10.1111/brv.12079

    Article  PubMed  Google Scholar 

  74. Waddington CH (1940) Organisers and genes. Cambridge University Press, Cambridge

    Google Scholar 

  75. Waddington CH (1942) Canalization of development and the inheritance of acquired characters. Nature 150(3811):563–565

    Article  Google Scholar 

  76. Whitman DW, Agrawal AA (2009) What is phenotypic plasticity and why is it important? In: Whitman DW, Ananthakrishna TN (eds) Phenotypic plasticity of insects: mechanisms and consequences. Science Publishes, Enfield

    Google Scholar 

  77. Wilson K, Cotter SC, Reeson AF, Pell JK (2001) Melanism and disease resistance in insects. Ecol Lett 4(6):637–649. https://doi.org/10.1046/j.1461-0248.2001.00279.x

    Article  Google Scholar 

  78. Zuur AF, Ieno EN, Elphick CS (2010) A protocol for data exploration to avoid common statistical problems. Methods Ecol Evol 1(1):3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded in part by a Joyce Vickery grant from the Linnean Society of New South Wales and an Australia Awards Endeavour Fellowship. We are grateful for the assistance of local museums and curators in helping locate sites for surveying, including Graham Brown at the Museum and Art Gallery of the Northern Territory, Geoff Thomas at the Queensland Museum, Dave Britton at the Australian Museum, and Beth Mantle at the Australian National Insect Collection. We thank the Dhimurru Aboriginal Corporation for granting access to their land, in particular Mandaka Marika and Banula Marika for escort and aid. We thank Colleen and Geoff Keena for their repeated hospitality in visiting their private Hibiscus garden. Andrew Allen provided vital input in building the multilevel ordinal regression model. We thank Ben Parslow for his work as a field assistant, and Laurie-Anne Keller for her work assisting photographic image analysis. Finally, thanks to several anonymous reviewers whose comments greatly improved this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. R. Burdfield-Steel.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fabricant, S.A., Burdfield-Steel, E.R., Umbers, K. et al. Warning signal plasticity in hibiscus harlequin bugs. Evol Ecol 32, 489–507 (2018). https://doi.org/10.1007/s10682-018-9946-3

Download citation

Keywords

  • Color variation
  • Phenotypic plasticity
  • Aposematic signals
  • Iridescence
  • Scutelleridae