Skip to main content

Towards an understanding of the evolutionary role of fire in animals

Abstract

Wildfires underpin the dynamics and diversity of many ecosystems worldwide, and plants show a plethora of adaptive traits for persisting recurrent fires. Many fire-prone ecosystems also harbor a rich fauna; however, knowledge about adaptive traits to fire in animals remains poorly explored. We review existing literature and suggest that fire is an important evolutionary driver for animal diversity because (1) many animals are present in fire-prone landscapes and may have structural and phenotypic characters that contribute to adaptation to these open landscapes; and (2) in some cases, animals from fire-prone ecosystems may show specific fire adaptations. While there is limited evidence on morphological fire adaptations in animals, there is evidence suggesting that different behaviors might provide a rich source of putative fire adaptations; this is because, in contrast to plants, most animals are mobile, unitary organisms, have reduced survival when directly burnt by fire and can move away from the fire. We call for research on fire adaptations (morphological, behavioral, and physiological) in animals, and emphasize that in the animal kingdom many fire adaptations are likely to be behavioral. While it may be difficult to discern these adaptations from other animal behaviors, making this distinction is fundamental if we want to understand the role of fire in shaping biodiversity. Developing this understanding is critical to how we view and manage our ecosystems in the face of current global and fire regime changes.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Álvarez G, Ammagarahalli B, Hall DR, Pajares JA, Gemeno C (2015) Smoke, pheromone and kairomone olfactory receptor neurons in males and females of the pine sawyer Monochamus galloprovincialis (Olivier) (Coleoptera: Cerambycidae). J Insect Physiol 82:46–55

    Article  PubMed  CAS  Google Scholar 

  2. Andersen AN (1988) Immediate and longer-term effects of fire on seed predation by ants in sclerophyllous vegetation in south-eastern Australia. Aust J Ecol 13:285–293

    Article  Google Scholar 

  3. Bernhardt P (1990) Pollination ecology of Oxalis violacea (Oxalidaceae) following a controlled grass fire. Plant Syst Evol 171:147–155

    Article  Google Scholar 

  4. Berry LE, Lindenmayer DB, Dennis TE, Driscoll DA, Banks SC (2016) Fire severity alters spatio-temporal movements and habitat utilisation by an arboreal marsupial, the mountain brushtail possum (Trichosurus cunninghami). Int J Wildland Fire 25:1291–1302

    Article  Google Scholar 

  5. Bonta M, Gosford R, Eussen D, Ferguson N, Loveless E, Witwer M (2017) Intentional fire-spreading by “Firehawk” raptors in Northern Australia. J Ethnobiol 37:700–718

    Article  Google Scholar 

  6. Boucher J, Azeria ET, Ibarzabal J, Hébert C (2012) Saproxylic beetles in disturbed boreal forests: temporal dynamics, habitat associations, and community structure. Ecoscience 19:328–343

    Article  Google Scholar 

  7. Bowman DMJS, Perry GLW, Higgins SI, Johnson CN, Fuhlendorf SD, Murphy BP (2016) Pyrodiversity is the coupling of biodiversity and fire regimes in food webs. Phil Trans R Soc Lond B Biol Sci 371:20150169

    Article  Google Scholar 

  8. Braithwaite RW (1987) Effects of fire regimes on lizards in the wet-dry tropics of Australia. J Trop Ecol 3:265–275

    Article  Google Scholar 

  9. Carvalho KS, Alencar A, Balch J, Moutinho P (2012) Leafcutter ant nests inhibit low-intensity fire spread in the understory of transitional forests at the Amazon’s forest-savanna boundary. Psyche 2012:780713

    Google Scholar 

  10. Chergui B, Fahd S, Santos X, Pausas JG (2018) Socioeconomics drive fire regime variability in the Mediterranean Basin. Ecosystems. https://doi.org/10.1007/s10021-017-0172-6

    Article  Google Scholar 

  11. Christian KA, Morton SR (1992) Extreme thermophilia in a central Australian ant, Melophorus bagoti. Physiol Zool 65:885–905

    Article  Google Scholar 

  12. Collard SB (2015) Fire Birds: valuing natural wildfires and burned forests. Bucking Horse Books, Missoula

    Google Scholar 

  13. Contreras Martínez S, Santana E (1995) The effect of forest fires on migratory birds in the Sierra de Manatlan, Jalisco, Mexico. In: Wilson MH, Sader SA (eds) Conservation of neotropical migratory birds in Mexico. Maine Agricultural and Forest Experiment Station, Maine, pp 113–122

    Google Scholar 

  14. Cooper WE, Pyron RA, Garland T (2014) Island tameness: living on islands reduces flight initiation distance. Proc R Soc Lond B Biol Sci 281:20133019. https://doi.org/10.1098/rspb.2013.3019

    Article  Google Scholar 

  15. Corbett LK, Andersen AN, Müller WJ (2003) Terrestrial vertebrates. In: Andersen AN, Cook GD, Williams RJ (eds) Fire in tropical savannas. Springer, New York, pp 126–152

    Chapter  Google Scholar 

  16. De Ronde CJ, Trollope WSW, Parr CL, Brockett B, Geldenhuys CJ (2004) Fire effects on flora and fauna. In: Goldammer JG, De Ronde CJ (eds) Wildlife fire management handbook for South Africa. Global Fire Monitoring Centre, Freiburg

    Google Scholar 

  17. Dell J, O’Brien J, Doan L, Richards L, Dyer L (2017) An arthropod survival strategy in a frequently burned forest. Ecology 98:2972–2974

    Article  PubMed  Google Scholar 

  18. Dröge E, Creel S, Becker MS, M’soka. J (2017) Risky times and risky places interact to affect prey behaviour. Nat Ecol Evol 1:1123–1128

    Article  PubMed  Google Scholar 

  19. Edwards EJ, Osborne CP, Strömberg CAE, Smith SA, Consortium CG (2010) The origins of C4 grasslands: integrating evolutionary and ecosystem science. Science 328:587–591

    Article  PubMed  CAS  Google Scholar 

  20. Ernst C, Boucher T, Sekscienski S, Wilgenbusch J (1995) Fire cology of the Florida box turtle, Terrapene carolina bauri. Herpet Rev 26:185–186

    Google Scholar 

  21. Evans WG (1966) Perception of infrared radiation from forest fires by Melanophila acuminata de Geer (Buprestidae, Coleoptera). Ecology 47:1061–1065

    Article  Google Scholar 

  22. Evans WG (2010) Reproductive role of infrared radiation sensors of Melanophila acuminata (Coleoptera: Buprestidae) at forest fires. Ann Entomol Soc Am 103:823–826

    Article  Google Scholar 

  23. Forsman A, Karlsson M, Wennersten L, Johansson J, Karpestam E (2011) Rapid evolution of fire melanism in replicated populations of pygmy grasshoppers. Evolution 65:2530–2540

    Article  PubMed  Google Scholar 

  24. Fox BJ (1982) Fire and mammalian secondary succession in an Australian coastal heath. Ecology 63:1332–1341

    Article  Google Scholar 

  25. Fuhlendorf SD, Engle DM, Kerby J, Hamilton R (2009) Pyric herbivory: rewilding landscapes through the recoupling of fire and grazing. Conserv Biol 23:588–598

    Article  PubMed  Google Scholar 

  26. Fulton RE, Carpenter FL (1979) Pollination, reproduction and fire in Arctostaphylos. Oecologia 113:871–879

    Google Scholar 

  27. Geffroy B, Samia DSM, Bessa E, Blumstein DT (2015) How nature-based tourism might increase prey vulnerability to predators. Trends Ecol Evol 30:755–765

    Article  PubMed  Google Scholar 

  28. Gibbons P, Lindenmayer D (2002) Tree hollows and wildlife conservation in Australia. CSIRO Pub, Canberra

    Google Scholar 

  29. Grafe TU, Döbler S, Linsenmair KE (2002) Frogs flee from the sound of fire. Proc R Soc Lond B Biol Sci 269:999–1003

    Article  Google Scholar 

  30. Guthrie RD (1967) Fire melanism among mammals. Am Midl Nat 77:227–230

    Article  Google Scholar 

  31. Hancock MH et al (2011) Burning and mowing as habitat management for capercaillie Tetrao urogallus: an experimental test. For Ecol Manage 262:509–521

    Article  Google Scholar 

  32. Herzog NM, Parker CH, Keefe ER, Coxworth J, Barrett A, Hawkes K (2014) Fire and home range expansion: a behavioral response to burning among savanna dwelling vervet monkeys (Chlorocebus aethiops). Am J Phys Anthropol 154:554–560

    Article  PubMed  Google Scholar 

  33. Hovick TJ, McGranahan DA, Elmore RD, Weir JR, Pyric-carnivory Fuhlendorf SD (2017) Raptor use of prescribed fires. Ecol Evol 7:9144–9150

    Article  PubMed  PubMed Central  Google Scholar 

  34. Howard DR, Hill PSM (2007) The effect of fire on spatial distributions of male mating aggregations in Gryllotalpa major Saussure (Orthoptera: Gryllotalpidae) at the nature conservancy’s tallgrass prairie preserve in Oklahoma: evidence of a fire-dependent species. J Kansas Entomol Soc 80:51–64

    Article  Google Scholar 

  35. Jacobs JM, Bergeron JAC, Work TT, Spence JR (2011) Low intensity surface fire instigates movement by adults of Calosoma frigidum (Coleoptera, Carabidae). ZooKeys 174:641–649

    Article  Google Scholar 

  36. Jaffe KE, Isbell LA (2009) After the fire: benefits of reduced ground cover for vervet monkeys (Cercopithecus aethiops). Am J Primatol 71:252–260

    Article  PubMed  Google Scholar 

  37. Karlsson M, Caesar S, Ahnesjö J, Forsman A (2008) Dynamics of colour polymorphism in a changing environment: Fire melanism and then what? Oecologia 154:715–724

    Article  PubMed  Google Scholar 

  38. Karpestam E, Merilaita S, Forsman A (2012) Reduced predation risk for melanistic pygmy grasshoppers in post-fire environments. Ecol Evol 2:2204–2212

    Article  PubMed  PubMed Central  Google Scholar 

  39. Keeley JE, Syphard A (2016) Climate change and future fire regimes: examples from California. Geosci 6:37

    Article  CAS  Google Scholar 

  40. Keeley JE, Pausas JG, Rundel PW, Bond WJ, Bradstock RA (2011) Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci 16:406–411

    Article  PubMed  CAS  Google Scholar 

  41. Keeley JE, Bond WJ, Bradstock RA, Pausas JG, Rundel PW (2012) Fire in Mediterranean ecosystems: ecology, evolution and management. Cambridge University Press, Cambridge

    Google Scholar 

  42. Kiltie RA (1989) Wildfire and the evolution of dorsal melanism in fox squirrels, Sciurus niger. J Mammal 70:726–739

    Article  Google Scholar 

  43. Kiss L, Magnin F (2006) High resilience of Mediterranean land snail communities to wildfires. Biodiv Conserv 15:2925–2944

    Article  Google Scholar 

  44. Klocke D, Schmitz A, Schmitz H (2011) Fire-adaptation in Hypocerides nearcticus Borgmeier and Anabarhynchus hyalipennis hyalipennis Marquart and new notes about the Australian “Smoke Fly” Microsania australis Collart (Diptera: Phoridae, Therevidae and Platypezidae). Open Entomol J 5:10–14

    Article  Google Scholar 

  45. Koivula M, Cobb T, Dechene AD, Jacobs J, Spence JR (2006) Responses of two Sericoda Kirby, 1837 (Coleoptera: Carabidae) species to forest harvesting, wildfire, and burn severity. Entomol Fenn 17:315–324

    Google Scholar 

  46. Leahy L et al (2016) Amplified predation after fire suppresses rodent populations in Australia’s tropical savannas. Wildl Res 42:705–716

    Article  Google Scholar 

  47. Legge S et al (2015) A landscape-scale, applied fire management experiment promotes recovery of a population of the threatened Gouldian finch, Erythrura gouldiae, in Australia’s tropical savannas. PLoS ONE 10:e0137997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Lillywhite HB, Friedman G, Ford N (1977) Color matching and perch selection by lizards in recently burned chaparral. Copeia 1977:115–121

    Article  Google Scholar 

  49. Lopes CT, Vasconcelos HL (2011) Fire increases insect herbivory in a Neotropical savanna. Biotropica 43:612–618

    Article  Google Scholar 

  50. MacArthur RH, MacArthur JW (1961) On bird species diversity. Ecology 42:594–598

    Article  Google Scholar 

  51. Martin RE, Sapsis DB (1992) Fires as agents of biodiversity: pyrodiversity promotes biodiversity. In: Kerner HM (ed) Proceedings of the conference on biodiversity of northwest California. University of California, Berkeley, pp 150–157

    Google Scholar 

  52. McGregor HW, Legge S, Jones ME, Johnson CN (2016) Extraterritorial hunting expeditions to intense fire scars by feral cats. Sci Rep 6:22559

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Mikolajewski DJ, Scharnweber K, Jiang B, Leicht S, Mauersberger R, Johansson F (2016) Changing the habitat: the evolution of inter-correlated traits to escape from predators. J Evol Biol 29:1394–1405

    Article  PubMed  CAS  Google Scholar 

  54. Milberg P, Bergman K-O, Norman H, Pettersson R, Westerberg L, Wikars L-O, Jansson N (2015) A burning desire for smoke? Sampling insects favoured by forest fire in the absence of fire. J Insect Conserv 19:55–65

    Article  Google Scholar 

  55. New TR (2014) Insects, fire and conservation. Springer, New York

    Book  Google Scholar 

  56. Nowack J, Delesalle M, Stawski C, Geiser F (2016) Can hibernators sense and evade fires? Olfactory acuity and locomotor performance during deep torpor. Sci Nat 103:1–7

    Article  CAS  Google Scholar 

  57. Nugent DT, Leonard SWJ, Clarke MF (2014) Interactions between the superb lyrebird (Menura novaehollandiae) and fire in south-eastern Australia. Wildl Res 41:203–211

    Article  Google Scholar 

  58. O’Donnell KM, Thompson FR, Semlitsch RD (2016) Prescribed fire alters surface activity and movement behavior of a terrestrial salamander. J Zool 298:303–309

    Article  Google Scholar 

  59. Parr CL, Andersen AN (2006) Patch mosaic burning for biodiversity conservation: a critique of the pyrodiversity paradigm. Conserv Biol 20:1610–1619

    Article  PubMed  Google Scholar 

  60. Parr CL, Chown SL (2003) Burning issues for conservation: a critique of faunal fire research in Southern Africa. Austral Ecol 28:384–395

    Article  Google Scholar 

  61. Parr CL, Andersen AN, Chastagnol C, Duffaud C (2006) Savanna fires increase rates and distances of seed dispersal by ants. Oecologia 151:33–41

    Article  PubMed  Google Scholar 

  62. Parr CL, Lehmann CER, Bond WJ, Hoffmann WA, Andersen AN (2014) Tropical grassy biomes: misunderstood, neglected, and under threat. Trends Ecol Evol 29:205–213

    Article  PubMed  Google Scholar 

  63. Parrini F, Owen-Smith N (2010) The importance of post-fire regrowth for sable antelope in a Southern African savanna. Afr J Ecol 48:526–534

    Article  Google Scholar 

  64. Pausas JG (2015) Bark thickness and fire regime. Funct Ecol 29:315–327

    Article  Google Scholar 

  65. Pausas JG, Keeley JE (2009) A burning story: the role of fire in the history of life. Bioscience 59:593–601

    Article  Google Scholar 

  66. Pausas JG, Keeley JE (2014) Abrupt climate-independent fire regime changes. Ecosystems 17:1109–1120

    Article  CAS  Google Scholar 

  67. Pausas JG, Bradstock RA, Keith DA, Keeley JE (2004) Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85:1085–1100

    Article  Google Scholar 

  68. Pausas JG, Lamont BB, Paula S, Appezzato-da-Glória B, Fidelis A (2018) Unearthing belowground bud banks in fire-prone ecosystems. New Phytol. https://doi.org/10.1111/nph.14982

    PubMed  Article  Google Scholar 

  69. Platt SG, Liu H, Borg CK (2010) Fire ecology of the Florida box turtle (Terrapene carolina bauri Taylor) in Pine Rockland Forests of the lower Florida Keys. Nat Areas J 30:254–260

    Article  Google Scholar 

  70. Potts SG et al (2003) Response of plant-pollinator communities to fire: changes in diversity, abundance and floral reward structure. Oikos 101:103–112

    Article  Google Scholar 

  71. Prada M, Marini-Filho OJ, Price PW (1995) Insects in flower heads of Aspilia foliacea (Asteraceae) after a fire in a central Brazilian savanna: evidence for the plant vigor hypothesis. Biotropica 27:513–518

    Article  Google Scholar 

  72. Pruetz JD, LaDuke TC (2010) Reaction to fire by savanna chimpanzees (Pan troglodytes Verus) at Fongoli, Senegal: conceptualization of “fire behavior” and the case for a chimpanzee model. Am J Phys Anthropol 141:646–650

    PubMed  Google Scholar 

  73. Rodríguez-Caro R, Graciá E, Anadón J, Gimenez A (2013) Maintained effects of fire on individual growth and survival rates in a spur-thighed tortoise population. Eur J Wildl Res 59:911–913

    Article  Google Scholar 

  74. Romme WH, Boyce MS, Gresswell R, Merrill EH, Minshall GW, Whitlock C, Turner MG (2011) Twenty years after the 1988 yellowstone fires: lessons about disturbance and ecosystems. Ecosystems 14:1196–1215

    Article  Google Scholar 

  75. Samia DSM, Nakagawa S, Nomura F, Rangel TF, Blumstein DT (2015) Increased tolerance to humans among disturbed wildlife. Nat Commun 6:8877

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Sanz-Aguilar A, Anadón JD, Giménez A, Ballestar R, Graciá E, Oro D (2011) Coexisting with fire: the case of the terrestrial tortoise Testudo graeca in mediterranean shrublands. Biol Conserv 144:1040–1049

    Article  Google Scholar 

  77. Scasta JD (2015) Fire and parasites: an under-recognized form of anthropogenic land use change and mechanism of disease exposure. EcoHealth 12:398–403

    Article  PubMed  Google Scholar 

  78. Scesny AA, Robbins LW (2006) Detection of fire by eastern red bats (Lasiurus borealis): arousal from torpor. Bat Res News 47:142

    Google Scholar 

  79. Schmitz H, Trenner S (2003) Electrophysiological characterization of the multipolar thermoreceptors in the “fire-beetle” Merimna atrata and comparison with the infrared sensilla of Melanophila acuminata (both Coleoptera, Buprestidae). J Comp Physiol A 189:715–722

    Article  CAS  Google Scholar 

  80. Schoennagel T, Balch JK, Brenkert-Smith H, Dennison PE, Harvey BJ, Krawchuk MA, Mietkiewicz N, Morgan P, Moritz MA, Rasker R, Turner MG, Whitlock C (2017) Adapt to more wildfire in western North American forests as climate changes. Proc Natl Acad Sci USA 114:4582–4590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Schutz S, Weissbecker B, Hummel HE, Apel KH, Schmitz H, Bleckmann H (1999) Insect antenna as a smoke detector. Nature 398:298–299

    Article  CAS  Google Scholar 

  82. Sensenig RL, Kimuyu DK, Ruiz Guajardo JC, Veblen KE, Riginos C, Young TP (2017) Fire disturbance disrupts an acacia ant–plant mutualism in favor of a subordinate ant species. Ecology 98:1455–1464

    Article  PubMed  Google Scholar 

  83. Smith JK (ed) (2000) Wildland fire in ecosystems: Effects of fire on fauna. General Technical Report RMRS-GTR-42, Rocky Mountain Research Station, USDA Forest Service

  84. Smith A, Avitabile SC, Leonard SWJ (2017) Less fuel for the fire: malleefowl (Leipoa ocellata) nesting activity affects fuel loads and fire behaviour. Wildl Res 43:640–648

    Article  Google Scholar 

  85. Stawski C, Körtner G, Nowack J, Geiser F (2015) The importance of mammalian torpor for survival in a post-fire landscape. Biol Lett 11:20150134

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Stromberg M (1997) Taricha torosa (California newt) response to fire. Herpetol Rev 28:82–84

    Google Scholar 

  87. Suckling DM, Gibb AR, Daly JM, Chen X, Brockerhoff EG (2001) Behavioral and electrophysiological responses of Arhopalus tristis to burnt pine and other stimuli. J Chem Ecol 27:1091–1104

    Article  PubMed  CAS  Google Scholar 

  88. Swengel A (2001) A literature review of insect responses to fire, compared to other conservation managements of open habitat. Biodivers Conserv 10:1141–1169

    Article  Google Scholar 

  89. Thom MD, Daniels JC, Kobziar LN, Colburn JR (2015) Can butterflies evade fire? Pupa location and heat tolerance in fire prone habitats of Florida. PLoS ONE 10:e0126755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. van Langevelde F, Van de Vijver CADM, Kumar L, van de Koppel J, Ridder N, van Andel J, Skidmore AK, Hearne JW, Stroosnijder L, Bond WJ, Prins HHT, Rietkerk M (2003) Effects of fire and herbivory on the stability of savanna ecosystems. Ecology 84:337–350

    Article  Google Scholar 

  91. van Mantgem EF, Keeley JE, Witter M (2015) Faunal responses to fire in chaparral and sage scrub in California, USA. Fire Ecol 11:128–148

    Article  Google Scholar 

  92. Whelan RJ (1995) The ecology of fire. Cambridge University Press, Cambridge

    Google Scholar 

  93. Whelan R, Rodgerson L, Dickman CR, Sutherland EF (2002) Critical life cycles of plants and animals: developing a process-based understanding of population changes in fire-prone landscapes. In: Bradstock RA, Williams JE, Gill AM (eds) Flammable Australia: the fire regimes and biodiversity of a continent, pp 94–124

  94. Wikars L-O (2002) Dependence on fire in wood-living insects: an experiment with burned and unburned spruce and birch logs. J Insect Conserv 6:1–12

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the project FILAS (CGL2015-64086-P) from the Spanish Government (Ministerio de Economía y Competitividad) and the PROMETEO/2016/021 project from the Valencia government (Generalitat Valenciana, Spain). CIDE (Desertification Research Centre) is a joint institute of the Spanish National Research Council (CSIC), the University of Valencia, and Generalitat Valenciana. J.G.P. conceived the idea and wrote the manuscript; C.L.P. contributed to the writing of the final version. We declare no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Juli G. Pausas.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pausas, J.G., Parr, C.L. Towards an understanding of the evolutionary role of fire in animals. Evol Ecol 32, 113–125 (2018). https://doi.org/10.1007/s10682-018-9927-6

Download citation

Keywords

  • Adaptations
  • Behavioral traits
  • Evolutionary fire ecology
  • Fire-fauna