Plant attractants: integrating insights from pollination and seed dispersal ecology

Abstract

Reproduction in many angiosperms depends on attracting animals that provide pollination and seed dispersal services. Flowers and fleshy fruits present various features that can attract animal mutualists through visual, olfactory, acoustic, and tactile cues and signals, and some of these traits may result from selection exerted by pollinators and seed dispersers. Plant attractants can provide information regarding the presence, location, and quality of the reward. However, because of the different functional outcomes of pollination and seed dispersal, pollination systems are thought to be more highly specialized than seed dispersal systems. Despite these interesting parallels and contrasts, theoretical and empirical insights in the sensory ecology of pollination and seed dispersal are rarely considered together. Here, we review extant theory and data of sensory attractants from both pollination and seed dispersal systems. We discuss theoretical and empirical similarities and differences between pollination and seed dispersal and offer suggestions for ways in which insights from each field may benefit the other in future.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Ackerman JD (1986) With the epiphytic existence pollination strategies. Selbyana 9:52–60

    Google Scholar 

  2. Allen G (1879) The colour-sense: its origin and development. Trubner, London

    Google Scholar 

  3. Balcomb SR, Chapman CA (2003) Bridging the seed dispersal gap: consequences of seed deposition for seedling recruitment in primate-tree interactions. Ecol Monogr 73:625–642

    Article  Google Scholar 

  4. Benitez-Vieyra S, Medina M, Cocucci AA (2009) Variable selection patterns on the labellum shape of Geoblasta pennicillata a sexually deceptive orchid. J Evol Biol 22:2354–2362

    CAS  PubMed  Article  Google Scholar 

  5. Bennett ATD, Théry M (2007) Avian color vision and coloration: multidisciplinary evolutionary biology. Am Nat 169:S1–S6

    Article  Google Scholar 

  6. Beyaert I, Hilker M (2014) Plant odour plumes as mediators of plant–insect interactions. Biol Rev 89:68–81

    PubMed  Article  Google Scholar 

  7. Blackiston D, Briscoe AD, Weiss MR (2011) Color vision and learning in the monarch butterfly, Danaus plexippus (Nymphalidae). J Exp Biol 214:509–520

    PubMed  Article  Google Scholar 

  8. Blüthgen N, Menzel F, Hovestadt T et al (2007) Specialization, constraints, and conflicting interests in mutualistic networks. Curr Biol 17:341–346

    PubMed  Article  CAS  Google Scholar 

  9. Borges RM, Bessière JM, Hossaert-McKey M (2008) The chemical ecology of seed dispersal in monoecious and dioecious figs. Funct Ecol 22:484–493

    Article  Google Scholar 

  10. Borges RM, Bessière JM, Ranganathan Y (2013) Diel variation in fig volatiles across syconium development: making sense of scents. J Chem Ecol 39:630–642

    CAS  PubMed  Article  Google Scholar 

  11. Brady CJ (1987) Fruit ripening. Annu Rev Plant Physiol 38:155–178

    CAS  Article  Google Scholar 

  12. Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46:471–510

    CAS  PubMed  Article  Google Scholar 

  13. Brodmann J, Twele R, Francke W, Yi-Bo L, Xi-Giang S, Ayasse M (2009) Orchid mimics honey bee alarm pheromone in order to attract hornets for pollination. Curr Biol 19:1368–1372

    CAS  PubMed  Article  Google Scholar 

  14. Burger H, Dötterl S, Ayasse M (2010) Host-plant finding and recognition by visual and olfactory floral cues in an oligolectic bee. Func Ecol 24:1234–1240

    Article  Google Scholar 

  15. Burns KC (2005) Does mimicry occur between fleshy-fruits? Evol Ecol Res 7:1067–1076

    Google Scholar 

  16. Caine NG, Osorio D, Mundy NI (2010) A foraging advantage for dichromatic marmosets (Callithrix geoffroyi) at low light intensity. Biol Lett 6:36–38

    PubMed  Article  Google Scholar 

  17. Cariveau D, Irwin RE, Brody AK et al (2004) Direct and indirect effects of pollinators and seed predators to selection on plant and floral traits. Oikos 104:15–26

    Article  Google Scholar 

  18. Cazetta E, Schaefer HM, Galetti M (2007) Why are fruits colorful? The relative importance of achromatic and chromatic contrasts for detection by birds. Evol Ecol 23:233–244

    Article  Google Scholar 

  19. Chapman CA (1995) Primate seed dispersal: coevolution and conservation implications. Evol Anthropol 4:74–82

    Article  Google Scholar 

  20. Chapman LJ, Chapman CA, Wrangham RW (1992) Balanites wilsoniana: elephant dependent dispersal. J Trop Ecol 8:275–283

    Article  Google Scholar 

  21. Chittka L (1996) Does bee colour vision predate the evolution of flower colour? Naturwissenschaften 83:136–138

    CAS  Article  Google Scholar 

  22. Chittka L, Raine NE (2006) Recognition of flowers by pollinators. Curr Opin Plant Biol 9:428–435

    PubMed  Article  Google Scholar 

  23. Chittka L, Dyer AG, Bock F, Dornhaus A (2003) Bees trade off foraging speed for accuracy. Nature 424:388

    CAS  PubMed  Article  Google Scholar 

  24. Coombe BG (1976) The development of fleshy fruits. Annu Rev Plant Physiol 27:507–528

    Article  Google Scholar 

  25. Corlett RT (2011) How to be a frugivore (in a changing world). Acta Oecol 37:674–681

    Article  Google Scholar 

  26. Dafni A (1984) Mimicry and deception in pollination. Annu Rev Ecol Syst 15:259–278

    Article  Google Scholar 

  27. Dafni A, Kevan P (1997) Flower size and shape: implications in pollination. Israel J Plant Sci 45:201–212

    Article  Google Scholar 

  28. Davis CC, Endress P, Baum DA (2008) The evolution of floral gigantism. Curr Opin Plant Biol 11:49–57

    PubMed  Article  Google Scholar 

  29. Dobson HEM (2006) Relationship between floral fragrance composition and type of pollinator. In: Dudareva N, Pichersky E (eds) Biology of floral scent. CRC Press, Boca Raton, FL, pp 147–198

    Google Scholar 

  30. Dobson HEM, Bergström G (2000) The ecology and evolution of pollen odors. Plant Syst Evol 222:63–87

    CAS  Article  Google Scholar 

  31. Dominy NJ (2004) Fruits, fingers, and fermentation: the sensory cues available to foraging primates. Integr Comp Biol 44:295–303

    PubMed  Article  Google Scholar 

  32. Dominy NJ, Lucas PW, Osorio D, Yamashita N (2001) The sensory ecology of primate food perception. Evol Anthropol 10:171–186

    Article  Google Scholar 

  33. Dötterl S, Jürgens A (2005) Spatial fragrance patterns in flowers of Silene latifolia: lilac compounds as olfactory nectar guides? Plant Syst Evol 255:99–109

    Article  CAS  Google Scholar 

  34. Dötterl S, Schäffler I (2007) Flower scent of floral oil-producing Lysimachia punctata as attractant for the oil-be Macropis fulvipes. J Chem Ecol 33:441–445

    PubMed  Article  CAS  Google Scholar 

  35. Dötterl S, Glück U, Jürgens A, Woodring J, Aas G (2014) Floral reward, advertisement and attractiveness to honey bees in dioecious Salix caprea. PLoS ONE 9:e93421

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. Duan Q, Goodale E, Quan RC (2014) Bird fruit preferences match the frequency of fruit colours in tropical Asia. Sci Rep 4:5627

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Dyer AG, Whitney HM, Arnold SEJ, Glover BJ, Chittka L (2006) Bees associate warmth with flower colour. Nature 442:525

    CAS  PubMed  Article  Google Scholar 

  38. Eltz T, Zimmermann Y, Haftmann J, Twele R, Francke W, Quezada-Euan JJG, Lunau K (2007) Enfleurage, lipid recycling and the origin of perfume collection in orchid bees. Proc R Soc Lond B 274:2843–2848

    CAS  Article  Google Scholar 

  39. Fægri K, van der Pijl L (1979) The principles of pollination ecology, 3rd edn. Pergamon Press, Oxford

    Google Scholar 

  40. Farré-Armengol G, Peñuelas J, Li T et al (2016) Ozone degrades floral scent and reduces pollinator attraction to flowers. N Phytol 209:152–160

    Article  CAS  Google Scholar 

  41. Farzad M, Griesbach R, Weiss MR (2002) Floral color change in Viola cornuta (Violaceae): a model system to study the regulation of anthocyanin production. Plant Sci 162:225–231

    CAS  Article  Google Scholar 

  42. Fenster CB, Armbruster WS, Wilson P et al (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst 35:375–403

    Article  Google Scholar 

  43. Fischer KE, Chapman CA (1993) Frugivores and fruit syndromes: differences in patterns at the genus and species level. Oikos 66:472–482

    Article  Google Scholar 

  44. Frey FM (2004) Opposing natural selection from herbivores and pathogens may maintain floral–color variation in Claytonia virginica (Portulacaceae). Evolution 58:2426–2437

    PubMed  Article  Google Scholar 

  45. Galetti M (2002) Seed dispersal of mimetic fruits: parasitism, mutualism, aposematism or exaptation? In: Levey DJ (ed) Seed dispersal and frugivory: ecology, evolution and conservation. CABI, New York, pp 177–191

    Google Scholar 

  46. Galetti M, Donatti CI, Pizo MA, Giacomini HC (2008) Big fish are the best: seed dispersal of Bactris glaucescens by the pacu fish (Piaractus mesopotamicus) in the Pantanal, Brazil. Biotropica 40:386–389

    Article  Google Scholar 

  47. Galetti M, Guevara R, Côrtes MC et al (2013) Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340:1086–1090

    CAS  PubMed  Article  Google Scholar 

  48. Giovannoni J (2004) Genetic regulation of fruit development and ripening. Plant Cell 16:170–181

    Article  Google Scholar 

  49. Giurfa M (2004) Conditioning procedure and color discrimination in the honeybee Apis mellifera. Naturwissenschaften 91:228–231

    CAS  PubMed  Article  Google Scholar 

  50. Glover BJ, Martin C (1998) The role of petal cell shape and pigmentation in pollination success in Antirrhinum majus. Heredity 80:778–784

    Article  Google Scholar 

  51. Glover BJ, Whitney HM (2010) Structural colour and iridescence in plants: the poorly studied relations of pigment colour. Ann Bot 105:505–511

    PubMed  PubMed Central  Article  Google Scholar 

  52. Gonzalez-Terrazas TP, Martel C, Milet-Pinheiro P, Ayasse M, Kalko EKV, Tschapka M (2016) Finding flowers in the dark: nectar-feeding bats integrate olfaction and echolocation while foraging for nectar. R Soc open Sci. doi:10.1098/rsos.160199

    PubMed  PubMed Central  Google Scholar 

  53. Gottsberger G, Silberbauer-Gottsberger I (1991) Olfactory and visual attraction of Erioscelis emarginata (Cyclocephalini, Dynastinae) to the inflorescences of Philodendron selloum (Araceae). Biotropica 23:23–28

    Article  Google Scholar 

  54. Goyret J, Markwell PM, Raguso RA (2008) Context- and scale-dependent effects of floral CO2 on nectar foraging by Manduca sexta. Proc Natl Acad Sci USA 105:4565–4570

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Gronquist M, Bezzerides A, Attygalle A, Meinwald J, Eisner M, Eisner T (2001) Attractive and defensive functions of the ultraviolet pigments of a flower (Hypericum calycinum). Proc Natl Acad Sci USA 98:13745–13750

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Guerenstein PG, Yepez EA, van Haren J et al (2004) Floral CO2 emission may indicate food abundance to nectar-feeding moths. Naturwissenschaften 91:329–333

    CAS  PubMed  Article  Google Scholar 

  57. Gumbert A (2000) Color choices by bumble bees (Bombus terrestris): innate preferences and generalization after learning. Behav Ecol Sociobiol 48:36–43

    Article  Google Scholar 

  58. Gumbert A, Kunze J, Chittka L (1999) Floral color diversity in plant communities, bee colour space and a null model. Proc R Soc B 266:1711–1716

    PubMed Central  Article  Google Scholar 

  59. Hartlieb E, Anderson P (1999) Olfactory-released behaviours. In: Hansson BS (ed) Insect olfaction. Springer, Berlin, pp 315–349

    Google Scholar 

  60. Hasin-Brumshtein Y, Lancet D, Olender T (2009) Human olfaction: from genomic variation to phenotypic diversity. Trends Gen 25:178–184

    CAS  Article  Google Scholar 

  61. Hebets EA, Papaj DR (2005) Complex signal function: developing a framework of testable hypotheses. Behav Ecol Sociobiol 57:197–214

    Article  Google Scholar 

  62. Hiramatsu C, Melin AD, Aureli F et al (2009) Interplay of olfaction and vision in fruit foraging of spider monkeys. Anim Behav 77:1421–1426

    Article  Google Scholar 

  63. Hirsch BT (2010) Tradeoff between travel speed and olfactory food detection in ring-tailed coatis (Nasua nasua). Ethology 116:671–679

    Google Scholar 

  64. Hodgkison R, Ayasse M, Kalko EKV et al (2007) Chemical ecology of fruit bat foraging behavior in relation to the fruit odors of two species of Paleotropical bat-dispersed figs (Ficus hispida and Ficus scortechinii). J Chem Ecol 33:2097–2110

    CAS  PubMed  Article  Google Scholar 

  65. Hodgkison R, Ayasse M, Häberlein C et al (2013) Fruit bats and bat fruits: the evolution of fruit scent in relation to the foraging behaviour of bats in the new and old world tropics. Funct Ecol 27:1075–1084

    Article  Google Scholar 

  66. Howe HF (1986) Seed dispersal by fruit-eating birds and mammals. In: Murray DR (ed) Seed dispersal. Academic Press, San Diego, pp 123–189

    Google Scholar 

  67. Huber FFK, Kaiser R, Sauter W, Schiestl FP (2005) Floral scent emission and pollinator attraction in two species of Gymnadenia (Orchidaceae). Oecologia 142:564–575

    PubMed  Article  Google Scholar 

  68. Hunt DM, Carvalho LS, Cowing JA, Davies WL (2009) Evolution and spectral tuning of visual pigments in birds and mammals. Phil Trans R Soc Lond B Biol Sci 364:2941–2955

    CAS  Article  Google Scholar 

  69. Ida TY, Kudo G (2003) Floral color change in Weigela middendorffiana (Caprifoliaceae): reduction of geitonogamous pollination by bumble bees. Am J Bot 90:1751–1757

    PubMed  Article  Google Scholar 

  70. Irwin RE, Strauss SY, Storz S, Emerson A, Guibert G (2003) The role of herbivores in the maintenance of a flower color polymorphism in wild radish. Ecology 84:1733–1743

    Article  Google Scholar 

  71. Jacobs GH (2009) Evolution of colour vision in mammals. Phil Trans Roy Soc B 364:2957–2967

    CAS  Article  Google Scholar 

  72. Jacobson M (1978) Handbook of sensory physiology: development of sensory systems. Springer, New York

    Google Scholar 

  73. Janson CH (1983) Adaptation of fruit morphology to dispersal agents in a Neotropical forest. Science 219:187–189

    CAS  PubMed  Article  Google Scholar 

  74. Janson CH, Chapman CA (2000) Primate resources and the determination of primate community structure. In: Fleagle JG, Janson CH, Reed K (eds) Primate communities. Cambridge University Press, Cambridge, pp 237–267

    Google Scholar 

  75. Jersáková J, Johnson SD, Kindlmann P (2006) Mechanisms and evolution of deceptive pollination in orchids. Biol Rev 81:219–235

    PubMed  Article  Google Scholar 

  76. Jersáková J, Johnson SD, Jürgens A (2009) Deceptive behavior in plants. II. Food dsception by plants: from generalized systems to specialized floral mimicry. In: Baluska F (ed) Plant-environment interactions. Springer, Berlin, pp 223–246

    Google Scholar 

  77. Jersáková J, Jürgens A, Šmilauer P, Johnson SD (2012) The evolution of floral mimicry: identifying traits that visually attract pollinators. Funct Ecol 26:1381–1389

    Article  Google Scholar 

  78. Jones KN, Reithel JS (2001) Pollinator-mediated selection on a flower color polymorphism in experimental populations of Antirrhinum (Scrophulariaceae). Am J Bot 88:447–454

    Article  Google Scholar 

  79. Jones G, Teeling EC (2006) The evolution of echolocation in bats. Trends Ecol Evol 21:149–156

    PubMed  Article  Google Scholar 

  80. Junker RR, Parachnowitsch AL (2015) Working towards a holistic view on flower traits-how floral scents mediate plant–animal interactions in concert with other floral characters. J Indian Inst Sci 95:43–67

    Google Scholar 

  81. Jürgens A, Dötterl S, Meve U (2006) The chemical nature of fetid floral odours in stapeliads (Apocynaceae-Asclepiadoideae-Ceropegieae). N Phytol 172:452–468

    Article  CAS  Google Scholar 

  82. Jürgens A, Wee SL, Shuttleworth A, Johnson SD (2013) Chemical mimicry of insect oviposition sites: a global analysis of convergence in angiosperms. Ecol Lett 16:1157–1167

    PubMed  Article  Google Scholar 

  83. Kaczorowski RL, Leonard AS, Dornhaus A, Papaj DR (2012) Floral signal complexity as a possible adaptation to environmetnal variability: a test using nectar-forgaing bumblebees, Bombus impatiens. Anim Behav 83:905–913

    Article  Google Scholar 

  84. Kalko EKV, Condon M (1998) Echolocation, olfaction and fruit display: how bats find fruit of Flagellichorus cucurbits. Funct Ecol 12:364–372

    Article  Google Scholar 

  85. Karremans AP, Pupulin F, Grimaldi D et al (2015) Pollination of Specklinia by nectar-feeding Drosophila: the first reported case of a deceptive syndrome employing aggregation pheromones in Orchidaceae. Ann Bot 116:437–455

    PubMed  PubMed Central  Article  Google Scholar 

  86. Kelber A, Balkenius A, Warrant EJ (2003) Colour vision in diurnal and nocturnal hawkmoths. Int Comp Biol 43:571–579

    Article  Google Scholar 

  87. Kessler A, Halitschke R (2009) Testing the potential for conflicting selection on floral chemical traits by pollinators and herbivores: predictions and a case study. Funct Ecol 23:901–912

    Article  Google Scholar 

  88. Knauer AC, Schiestl FP (2015) Bees use honest floral signals as indicators of reward when visiting flowers. Ecol Lett 18:135–143

    CAS  PubMed  Article  Google Scholar 

  89. Knudsen JT, Tollsten L, Bergström G (1993) A review: floral scents—a check list of volatile compounds isolated by head-space techniques. Phytochemistry 33:253–280

    CAS  Article  Google Scholar 

  90. Knudsen JT, Eriksson R, Gershenzon J, Ståhl B (2006) Diversity and distribution of floral scent. Bot Rev 72:1–120

    Article  Google Scholar 

  91. Korine C, Kalko EKV (2005) Fruit detection and discrimination by small fruit-eating bats (Phyllostomidae): echolocation call design and olfaction. Behav Ecol Sociobiol 59:12–23

    Article  Google Scholar 

  92. Lambert JE, Chapman CA, Wrangham RW, Conklin-Brittain NL (2004) The hardness of cercopithecine foods: implications for the critical function of enamel thickness in exploiting fallback foods. Am J Phys Anthropol 125:363–368

    PubMed  Article  Google Scholar 

  93. Leonard AS, Masek P (2014) Multisensory integration of colors and scents: insights from bees and flowers. J Comp Physiol A 200:463–474

    CAS  Article  Google Scholar 

  94. Leonard AS, Dornhaus A, Papaj DR (2011) Forget-me-not: complex floral signals, inter-signal interactions, and pollinator cognition. Curr Zool 57:215–224

    Article  Google Scholar 

  95. Levey DJ (1987) Seed size and fruit-handling techniques of avian frugivores. Am Nat 129:471–485

    Article  Google Scholar 

  96. Linn CE, Dambroski HR, Feder JL, Berlocher SH, Nojima S, Roelofs WL (2004) Postzygotic isolating factor in sympatric speciation in Rhagoletis flies: reduced response of hybrids to parental host-fruit odors. Proc Nat Acad Sci USA 101:17753–17758

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. Liu H, Platt SG, Borg CK (2004) Seed dispersal by the Florida box turtle (Terrapene carolina bauri) in pine rockland forests of the lower Florida Keys, United States. Oecologia 138:539–546

    PubMed  Article  Google Scholar 

  98. Lomáscolo S, Schaefer H (2010) Signal convergence in fruits: A result of selection by frugivores? J Evol Biol 23:614–624

    PubMed  Article  Google Scholar 

  99. Lomáscolo S, Levey D, Kimball R, Bolker B, Alborn H (2010) Dispersers shape fruit diversity in Ficus (Moraceae). Proc Nat Acad Sci USA 107:14668–14672

    PubMed  PubMed Central  Article  Google Scholar 

  100. Lucas PW, Corlett RT (1998) Seed dispersal by long-tailed macaques. Am J Primatol 45:29–44

    CAS  PubMed  Article  Google Scholar 

  101. Lunau K (1995) Notes on the colour of pollen. Plant Syst Evol 198:235–252

    Article  Google Scholar 

  102. Lunau K (2000) The ecology and evolution of visual pollen signals. In: Dafni A, Hesse M, Pacini E (eds) Pollen and pollination. Springer, Vienna, pp 89–111

    Google Scholar 

  103. Melin AD, Fedigan LM, Hiramatsu C et al (2009) Fig foraging by dichromatic and trichromatic Cebus capucinus in a tropical dry forest. Int J Primatol 30:753–775

    Article  Google Scholar 

  104. Melin AD, Hiramatsu C, Parr NA et al (2014) The behavioral ecology of color vision: considering fruit conspicuity, detection distance and dietary importance. Int J Primatol 35:258–287

    Article  Google Scholar 

  105. Menzel R, Backhaus W (1991) Color vision in insects. In: Gouras P (ed) Vision and visual dysfunction: the perception of color. Macmillan Press, London, pp 262–293

    Google Scholar 

  106. Midgley JJ, White JDM, Johnson SD, Bronner GN (2015) Faecal mimicry by seeds ensures dispersal by dung beetles. Nat Plants 1:15141

    PubMed  Article  Google Scholar 

  107. Milet-Pinheiro P, Ayasse M, Schlindwein C, Dobson HEM, Dötterl S (2012) Host location by visual and olfactory floral cues in an oligolectic bee: innate and learned behavior. Behav Ecol 23:531–538

    Article  Google Scholar 

  108. Milet-Pinheiro P, Ayasse M, Dobson HEM et al (2013) The chemical basis of host-plant recognition in a specialized bee pollinator. J Chem Ecol 39:1347–1360

    CAS  PubMed  Article  Google Scholar 

  109. Miller R, Owens SJ, Rørslett B (2011) Plants and colour: flowers and pollination. Opt Laser Technol 43:282–294

    CAS  Article  Google Scholar 

  110. Mollon JD (1989) “Tho’she kneel’d in that place where they grew…” The uses and origins of primate colour vision. J Exp Biol 146:21–38

    CAS  PubMed  Google Scholar 

  111. Muchhala N, Serrano D (2015) The complexity of background clutter affects nectar bat use of flower odor and shape cues. PLoS ONE 10:e0136657

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  112. Nevo O, Heymann EW (2015) Led by the nose: olfaction in primate feeding ecology. Evol Anthropol 24:137–148

    PubMed  PubMed Central  Article  Google Scholar 

  113. Nevo O, Garri RO, Hernandez Salazar LT et al (2015) Chemical recognition of fruit ripeness in spider monkeys (Ateles geoffroyi). Sci Rep 5:14895

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  114. Nevo O, Heymann EW, Schulz S, Ayasse M (2016) Fruit odor as a ripeness signal for seed-dispersing primates? A case study on four Neotropical plant species. J Chem Ecol 42:323–328

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  115. Nuttman C, Willmer PG (2003) How does insect visitation trigger floral colour change? Ecol Entomol 28:467–474

    Article  Google Scholar 

  116. Ollerton J, Lack A (1998) Relationships between flowering phenology, plant size and reproductive success in Lotus corniculatus (Fabaceae). Plant Ecol 139:35–47

    Article  Google Scholar 

  117. Olson VA, Owens IPF (1998) Costly sexual signals: Are carotenoids rare, risky or required? Trends Ecol Evol 13:510–514

    CAS  PubMed  Article  Google Scholar 

  118. Osorio D, Vorobyev M (1996) Colour vision as an adaptation to frugivory in primates. Proc R Soc B 263:593–599

    CAS  PubMed  Article  Google Scholar 

  119. Osorio D, Vorobyev M (2008) A review of the evolution of animal colour vision and visual communication signals. Vis Res 48:2042–2051

    CAS  PubMed  Article  Google Scholar 

  120. Otte D (1974) Effects and functions in the evolution of signaling systems. Ann Rev Ecol Syst 5:385–417

    Article  Google Scholar 

  121. Paliyath G, Murr DP, Handa AK, Lurie S (2008) Postharvest biology and technology of fruits, vegetables and flowers. Wiley, Singapore

    Google Scholar 

  122. Pettersson S, Ervik F, Knudsen JT (2004) Floral scent of bat-pollinated species: west Africa versus the new world. Biol J Linn Soc 82:161–168

    Article  Google Scholar 

  123. Pfeiffer M, Huttenlocher H, Ayasse M (2010) Myrmecochorous plants use chemical mimicry to cheat seed-dispersing ants. Funct Ecol 24:545–555

    Article  Google Scholar 

  124. Pohl M, Watolla T, Lunau K (2008) Anther–mimicking floral guides exploit a conflict between innate preference and learning in bumblebees (Bombus terrestris). Behav Ecol Sociobiol 63:295–302

    Article  Google Scholar 

  125. Proctor M, Yeo P, Lack A (1996) The natural history of pollination. Harper Collins, London

    Google Scholar 

  126. Raguso RA (2004a) Flowers as sensory billboards: progress towards an integrated understanding of floral advertisement. Curr Opin Plant Biol 7:434–440

    PubMed  Article  Google Scholar 

  127. Raguso RA (2004b) Why are some floral nectars scented? Ecology 85:1486–1494

    Article  Google Scholar 

  128. Raguso RA (2008) Wake up and smell the roses: the ecology and evolution of floral scent. Annu Rev Ecol Evol Syst 39:549–569

    Article  Google Scholar 

  129. Raguso RA, Levin RA, Foose SE et al (2003) Fragrance chemistry, nocturnal rhythms and pollination “syndromes” in Nicotiana. Phytochemistry 63:265–284

    CAS  PubMed  Article  Google Scholar 

  130. Rausher MD (2008) Evolutionary transitions in floral color. Int J Plant Sci 169:7–21

    CAS  Article  Google Scholar 

  131. Regan BC, Julliot C, Simmen B et al (2001) Fruits, foliage and the evolution of primate colour vision. Phil Trans R Soc B 356:229–283

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. Renoult JP, Valido A, Jordano P, Schaefer HM (2013) Adaptation of flower and fruit colours to multiple, distinct mutualists. New Phytol 201:678–686

    PubMed  Article  Google Scholar 

  133. Riffell JA, Lei H, Christensen TA, Hildebrand JG (2009) Characterization and coding of behaviorally significant odor mixtures. Curr Biol 19:335–340

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  134. Riffell JA, Lei H, Abrell L, Hilderbrand JG (2013) Neural basis of a pollinator’s buffet: olfactory specializazion and learning in Manduca sexta. Science 339:200–204

    CAS  PubMed  Article  Google Scholar 

  135. Riffell JA, Shlizerman E, Sanders E et al (2014) Flower discrimination by pollinators in a dynamic chemical environment. Science 344:1515–1518

    CAS  PubMed  Article  Google Scholar 

  136. Rizvanovic A, Amundin M, Laska M (2013) Olfactory discrimination ability of Asian elephants (Elephas maximus) for structurally related odorants. Chem Sens 38:107–118

    CAS  Article  Google Scholar 

  137. Salinas L, Arana C, Suni M (2007) El néctar de especies de Puya como recurso para picaflores Altoandinos de Ancash, Perú. Rev Peru Biol 14:129–134

    Google Scholar 

  138. Salzmann CC, Cozzolino S, Schiestl FP (2007) Floral scent in food-deceptive orchids: species specificity and sources of variability. Plant Biol 9:720–729

    CAS  PubMed  Article  Google Scholar 

  139. Schaefer H, Braun J (2009) Reliable cues and signals of fruit quality are contingent on the habitat in black elder (Sambucus nigra). Ecology 90:1564–1573

    PubMed  Article  Google Scholar 

  140. Schaefer HM, Ruxton GD (2009) Deception in plants: Mimicry or perceptual exploitation? Trends Ecol Evol 24:676–685

    PubMed  Article  Google Scholar 

  141. Schaefer HM, Ruxton GD (2011) Animal–plant communication. Oxford University Press, Oxford

    Google Scholar 

  142. Schaefer HM, Schaefer V, Levey DJ (2004) How plant–animal interactions signal new insights in communication. Trends Ecol Evol 19:577–584

    Article  Google Scholar 

  143. Schaefer HM, Schaefer V, Vorobyev M (2007) Are fruit colors adapted to consumer vision and birds equally efficient in detecting colorful signals? Am Nat 169:S159–S169

    PubMed  Article  Google Scholar 

  144. Schaefer HM, Valido A, Jordano P (2014) Birds see the true colours of fruits to live off the fat of the land. Proc R Soc B 281:20132516

    PubMed  PubMed Central  Article  Google Scholar 

  145. Schäffler I, Steiner KE, Haid M et al (2015) Diacetin, a reliable cue and private communication channel in a specialized pollination system. Sci Rep 5:12779

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  146. Schiestl FP (2004) Floral evolution and pollinator mate choice in a sexually deceptive orchid. J Evol Biol 17:67–75

    CAS  PubMed  Article  Google Scholar 

  147. Schiestl FP (2005) On the success of a swindle: pollination by deception in orchids. Naturwissenschaften 92:255–264

    CAS  PubMed  Article  Google Scholar 

  148. Schiestl FP (2015) Ecology and evolution of floral volatile-mediated information transfer in plants. N Phytol 206:571–577

    Article  Google Scholar 

  149. Schiestl FP, Johnson SD (2013) Pollinator-mediated evolution of floral signals. Trends Ecol Evol 28:307–315

    PubMed  Article  Google Scholar 

  150. Schiestl FP, Ayasse M, Paulus HF et al (1999) Orchid pollination by sexual swindle. Nature 399:421

    CAS  Article  Google Scholar 

  151. Schiestl FP, Peakall R, Mant JG et al (2003) The chemistry of sexual deception in an orchid-wasp pollination system. Science 302:437–438

    CAS  PubMed  Article  Google Scholar 

  152. Schlumpberger BO, Cocucci AA, Moré M, Sérsic AN, Raguso RA (2009) Extreme variation in floral characters and its consequences for pollinator attraction among populations of an Andean cactus. Ann Bot 103:1489–1500

    PubMed  PubMed Central  Article  Google Scholar 

  153. Schöner MG, Schöner CR, Simon R et al (2015) Bats are acoustically attracted to mutualistic carnivorous plants. Curr Biol 25:1911–1916

    PubMed  Article  CAS  Google Scholar 

  154. Schupp EW (1993) Quantity, quality and the effectiveness of seed dispersal by animals. Vegetatio 108:15–29

    Google Scholar 

  155. Seymour RS, Gibernau M, Ito K (2003) Thermogenesis and respiration of inflorescences of the dead horse arum Helicodiceros muscivorus, a pseudothermoregulatory aroid associated with fly pollination. Funct Ecol 17:886–894

    Article  Google Scholar 

  156. Siemers BM, Goerlitz HR, Robsomanitrandrasana E et al (2007) Sensory basis of food detection in wild Microcebus murinus. Int J Primatol 28:291–304

    Article  Google Scholar 

  157. Simon R, Holderied MW, Koch CU, von Helversen O (2011) Floral acoustics: conspicuous echoes of a dish-shaped leaf attract bat pollinators. Science 333:631–633

    CAS  PubMed  Article  Google Scholar 

  158. Smith MJ, Harper DGC (1995) Animal signals: models and terminology. J Theor Biol 177:305–311

    Article  Google Scholar 

  159. Sobral M, Veiga T, Domínguez P, Guitián JA, Guitián P, Guitián JM (2015) Selective pressures explain differences in flower color among Gentiana lutea populations. PLoS ONE 10:e0132522

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  160. Stournaras KE, Lo E, Böhning-Gaese K et al (2013) How colorful are fruits? Limited color diversity in fleshy fruits on local and global scales. N Phytol 198:617–629

    Article  Google Scholar 

  161. Sumner P, Mollon JD (2000) Catarrhine photopigments are optimized for detecting targets against a foliage background. J Exp Biol 203:1963–1986

    CAS  PubMed  Google Scholar 

  162. Tamboia T, Cipollini ML, Levey DJ (1996) An evaluation of vertebrate seed dispersal syndromes in four species of black nightshade (Solanum sect. Solanum). Oecologia 107:522–532

    Article  Google Scholar 

  163. Tan Y, Yoder AD, Yamashita N, Li WH (2005) Evidence from opsin genes rejects nocturnality in ancestral primates. Proc Nat Acad Sci USA 102:14712–14716

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  164. Torigoe T (1985) Comparison of object manipulation among 74 species of non-human primates. Primates 26:182–194

    Article  Google Scholar 

  165. Turner K, Frederickson M (2013) Signals can trump rewards in attracting seed-dispersing ants. PLoS ONE 8:e71871

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  166. Vaknin Y, Gan-Mor S, Bechar A, Ronen B, Eisikowitch D (2001) Are flowers morphologically adapted to take advantage of electrostatic forces in pollination? N Phytol 152:301–306

    Article  Google Scholar 

  167. Valenta K, Burke RJ, Styler SA et al (2013) Colour and odour drive fruit selection and seed dispersal by mouse lemurs. Sci Rep 3:2424

    PubMed  PubMed Central  Article  Google Scholar 

  168. Valenta K, Brown KA, Rafaliarison RR et al (2015) Sensory integration during foraging: the importance of fruit hardness, colour, and odour to brown lemurs. Behav Ecol Sociobiol 69:1855–1865

    Article  Google Scholar 

  169. Valenta K, Miller CN, Monckton SK et al (2016) Fruit ripening signals and cues in a Madagascan dry forest: haptic indicators reliably indicate ripeness to dichromatic lemurs. Evol Biol 43:244–255

    Article  Google Scholar 

  170. van der Pijl L (1982) Principles of dispersal in higher plants, 3rd edn. Springer, Berlin

    Google Scholar 

  171. van Roosmalen MGM (1985) Habitat preferences, diet, feeding strategy and social organization of the black spider monkey (Ateles paniscus Linnaeus 1758) in Surinam. Acta Amazon 15:7–238

    Article  Google Scholar 

  172. Vignolini S, Rudall PJ, Rowland AV, Reed A, Moyroud E, Faden RB, Baumberg JJ, Glover BJ, Steiner U (2012) Pointillist structural color in pollia fruit. Proc Natl Acad Sci USA 109:15712–15715

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  173. von Helversen D, von Helversen O (1999) Acoustic guide in bat-pollinated flower. Nature 398:759–760

    Article  CAS  Google Scholar 

  174. von Helversen O, Winkler L, Bestmann HJ (2000) Sulphur-containing “perfumes” attract flower-visiting bats. J Comp Physiol A 186:143–153

    Article  Google Scholar 

  175. Warrant EJ, Johnsen S (2013) Vision and the light environment. Curr Biol 23:990–994

    Article  CAS  Google Scholar 

  176. Weiss MR (1995) Floral color change: a widespread functional convergence. Am J Bot 82:167–185

    Article  Google Scholar 

  177. Wheelwright NT (1993) Fruit size in a tropical tree species: variation, preference by birds, and heritability. In: Fleming TH, Estrada A (eds) Frugivory and seed dispersal: ecological and evolutionary aspects. Kluwer Academic Publishers, Dordrecht, pp 163–174

    Google Scholar 

  178. Wheelwright NT, Orians GH (1982) Seed dispersal by animals: contrasts with pollen dispersal, problems of terminology, and constraints on coevolution. Am Nat 119:402–413

    Article  Google Scholar 

  179. Whitney HM, Chittka L, Bruce T, Glover BJ (2009a) Conical epidermal cells allow bees to grip flowers and increase foraging efficiency. Curr Biol 19:1–6

    Article  CAS  Google Scholar 

  180. Whitney HM, Kolle M, Andrew P, Chittka L, Steiner U, Glover BJ (2009b) Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators. Science 323:130–133

    CAS  PubMed  Article  Google Scholar 

  181. Whitney HM, Bennett KMV, Dorling M, Sandbach L, Prince D, Chittka L, Glover BJ (2011) Why do so many petals have conical epidermal cells? Ann Bot 108:609–616

    PubMed  PubMed Central  Article  Google Scholar 

  182. Willmer P, Stanley DA, Steijven K et al (2009) Bidirectional flower color and shape changes allow a second opportunity for pollination. Curr Biol 19:919–923

    CAS  PubMed  Article  Google Scholar 

  183. Willson MF, Graff D, Whelan CJ (1990) Color preferences of frugivorous birds in relation to the colors of fleshy fruits. Condor 92:545–555

    Article  Google Scholar 

  184. Worman CO, Chapman CA (2005) Seasonal variation in the quality of a tropical ripe fruit and the response of three frugivores. J Trop Ecol 21:689–697

    Article  Google Scholar 

  185. Wright GA, Schiestl FP (2009) The evolution of floral scent: the influence of olfactory learning by insect pollinators on the honest signalling of floral rewards. Funct Ecol 23:841–851

    Article  Google Scholar 

  186. Yokoyama S (2002) Molecular evolution of color vision in vertebrates. Gene 300:69–78

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We thank Shawn Lehman and Amanda Melin for valuable discussion on this project. Funding for the research was provided by the Canada Research Chairs Program (CC), Natural Science and Engineering Research Council of Canada (KV, CC), Minerva Fellowship (ON), German Science Foundation (ON), and National Geographic Society (CC).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kim Valenta.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Valenta, K., Nevo, O., Martel, C. et al. Plant attractants: integrating insights from pollination and seed dispersal ecology. Evol Ecol 31, 249–267 (2017). https://doi.org/10.1007/s10682-016-9870-3

Download citation

Keywords

  • Animal–plant interactions
  • Communication
  • Coevolution
  • Foraging ecology
  • Mutualism
  • Sensory ecology