White flowers finish last: pollen-foraging bumble bees show biased learning in a floral color polymorphism

Abstract

Pollinator-driven selection is thought to drive much of the extraordinary diversity of flowering plants. Plants that produce floral traits preferred by particular pollinators are more likely to receive conspecific pollen and to evolve further adaptations to those pollinators that enhance pollination and ultimately generate floral diversity. Two mechanisms in particular, sensory bias and learning, are thought to explain how pollinator preference can contribute to divergence and speciation in flowering plants. While the preferences of pollinators, such as bees, flies, and birds, are frequently implicated in patterns of floral trait evolution, the role of learning in generating reproductive isolation and trait divergence for different floral types within plant populations is not well understood. Floral color polymorphism in particular provides an excellent opportunity to examine how pollinator behavior and learning might maintain the different floral morphs. In this study we asked if bumble bees showed innate preferences for different color morphs of the pollen-only plant Solanum tridynamum, whether bees formed preferences for the morphs with which they had experience collecting pollen from, and the strength of those learned preferences. Using an absolute conditioning protocol, we gave bees experience collecting pollen from a color polymorphic plant species that offered only pollen rewards. Despite initially-naïve bees showing no apparent innate bias toward human-white versus human-purple flower morphs, we did find evidence of a bias in learning. Specifically, bees learned strong preferences for purple corollas, but learned only weak preferences for hypochromic (human-white) corollas. We discuss how our results might explain patterns of floral display evolution, particularly as they relate to color polymorphisms. Additionally, we propose that the ease with which floral visual traits are learned—i.e., biases in learning—can influence the evolution of floral color as a signal to pollinators.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Anderson B, Alexandersson R, Johnson SD (2009) Evolution and coexistence of pollination ecotypes in an African Gladiolus (Iridaceae). Evolution 6(64):960–972

    Article  Google Scholar 

  2. Bates D, Maechler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48. doi:10.18637/jss.v067.i01

    Article  Google Scholar 

  3. Bradshaw HD, Schemske DW (2003) Allele substitution at a flower color locus produces a pollinator shift in monkeyflowers. Nature 426:176–178

    CAS  Article  PubMed  Google Scholar 

  4. Briscoe Runquist RD, Moeller DA (2014) Floral and mating system divergence in secondary sympatry: testing an alternative hypothesis to reinforcement in Clarkia. Ann Bot 113:223–235

    Article  PubMed  Google Scholar 

  5. Brunet J (2009) Pollinators of the Rocky Mountain columbine: temporal variation, functional groups and associations with floral traits. Ann Bot 103:1567–1578. doi:10.1093/aob/mcp096

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chittka L (1992) The color hexagon: a chromaticity diagram based on photoreceptor excitations as a generalized representation of color opponency. J Comp Physiol A 170:533–543

    Google Scholar 

  7. Chittka L, Thomson JD (2005) Cognitive ecology of pollination: animal behaviour and floral evolution. Cambridge University Press, Cambridge

    Google Scholar 

  8. Chittka L, Thomson JD, Waser NM (1999) Flower constancy, insect psychology, and plant evolution. Naturwissenschaften 86:361–377

    CAS  Article  Google Scholar 

  9. Croissant Y (2012) Estimation of multinomial logit model in R: the package mlogit. R package version 0.2–3 [cited 27 Sep 2015]. http://CRAN.R-project.org/package=mlogit

  10. Dyer AG, Spaethe J (2008) Comparative psychophysics of bumblebee and honeybee colour discrimination and object detection. J Comp Physiol A 194:617–627

    Article  Google Scholar 

  11. Engels B (2015) XNomial: exact goodness-of-fit test for multinomial data with fixed probabilities. R package version 2.14 [cited 15 Feb 2016]. https://cran.r-project.org/web/packages/XNomial/index.html

  12. Epperson BK, Clegg MT (1987) Frequency-dependent variation for outcrossing rate among flower-color morphs of Ipomoea purpurea. Evolution 41(6):1302–1311

    Article  Google Scholar 

  13. Fordyce JA, Gompert Z, Forister ML, Nice CC (2011) A hierarchical bayesian approach to ecological count data: a flexible tool for ecologists. PLoS ONE. doi:10.1371/journal.pone.0026785

    PubMed  PubMed Central  Google Scholar 

  14. Forister ML, Scholl CF (2012) Use of an exotic host plant affects mate choice in an insect herbivore. Am Nat 179(6):805–810

    Article  PubMed  Google Scholar 

  15. Fox J (2015) Applied regression analysis and generalized linear models, 3rd edn. Sage, London

    Google Scholar 

  16. Fukushi T (1989) Learning and discrimination of coloured papers in the walking blowfly, Lucilia cuprina. J Comp Physiol A 166:57–64

    CAS  Article  PubMed  Google Scholar 

  17. Gegear RJ, Burns JG (2007) The birds, the bees, and the virtual flowers: can pollinator behavior drive ecological speciation in flowering plants. Am Nat 170(4):551–566

    Article  PubMed  Google Scholar 

  18. Gegear RJ, Laverty TM (1995) Effect of flower complexity on relearning flower-handling skills in bumble bees. Can J Zool 73:2052–2058

    Article  Google Scholar 

  19. Giurfa M (2007) Behavioral and neural analysis of associative learning in the honeybee: a taste from the magic well. J Comp Physiol A 193:801–824

    Article  Google Scholar 

  20. Giurfa M, Vorobyev M (1997) The detection an recognition of color stimuli by honeybees: performance and mechanisms. Isr J Plant Sci 45:129–140

    Article  Google Scholar 

  21. Guerrieri F, Schibert M, Sandoz JC, Giurfa M (2005) Perceptual and neural olfactory similarity in honeybees. PLoS ONE. doi:10.1371/journal.pbio.0030060

    Google Scholar 

  22. Hempel de Ibarra N, Giurfa M (2003) Discrimination of closed coloured shapes by honeybees requires only contrast to the long wavelength receptor type. Anim Behav 66:903–910

    Article  Google Scholar 

  23. Hempel de Ibarra N, Giurfa M, Vorobyev M (2001) Detection of coloured patterns by honeybees through chromatic and achromatic cues. J Comp Physiol A 187:215–224

    CAS  Article  PubMed  Google Scholar 

  24. Hempel de Ibarra N, Langridge KV, Vorobyev M (2015) More than colour attraction: behavioral functions of flower patterns. Curr Opin Insect Sci 12:64–70

    Article  PubMed  PubMed Central  Google Scholar 

  25. Henningsen A, Toomet O (2011) maxLik: a package for maximum likelihood estimation in R. Comput Statistics 26(3):443–458. doi:10.1007/s00180-010-0217-1

    Article  Google Scholar 

  26. Hopkins R, Rausher MD (2012) Pollinator-mediated selection on flower color allele drives reinforcement. Science 335:1090–1092

    CAS  Article  PubMed  Google Scholar 

  27. Hothorn T, Bretz F, Westfall P, Heiberger RM, Scheutzenmeister A, Scheibe S (2015) Simultaneous inference in general parametric models. R package version 1.4-1. http://CRAN.Rproject.org/package=multcomp

  28. Hurly TA, Healy SD (2002) Cue learning by rufous hummingbirds (Selasphorus rufus). J Exp Psychol 28:209–223

    Google Scholar 

  29. Johnson SD (2006) Pollinator-driven speciation in plants. In: Harder LD, Barrett SCH (eds) The ecology and evolution of flowers. Oxford University Press, Oxford, pp 295–310

    Google Scholar 

  30. Kandori I (2002) Diverse visitors with various pollinator importance and temporal change in the important pollinators of Geranium thunbergii (Geraniaceae). Ecol Res 17:283–294

    Article  Google Scholar 

  31. Kelber A, Pfaff M (1997) Spontaneous and learned preferences for visual flower features in a diurnal hawkmoth. Isr J Plant Sci 45:235–245

    Article  Google Scholar 

  32. Leonard AS, Papaj DR (2011) ‘X’ marks the spot: the possible benefits of nectar guides to bees and plants. Funct Ecol 25:1293–1301

    Article  Google Scholar 

  33. Lunau K (1991) Innate flower recognition in bumblebees (Bombus terrestris, B. lucorum; Apidae): optical signals from stamens as landing reaction releasers. Ethology 88:203–214

    Article  Google Scholar 

  34. Lunau K (1992) Limits of colour learning in a flower-visiting hoverfly, Eristalis tenax L. (Syrphidae, Diptera). Eur J Neurosci Suppl 5:103

    Google Scholar 

  35. Lunau K, Maier EJ (1995) Innate colour preferences of flower visitors. J Comp Physiol A 177:1–19

    Article  Google Scholar 

  36. Lunau K, Wacht S, Chittka L (1996) Colour choices of naïve bumble bees and their implications for colour perception. J Comp Physiol A 178:477–489

    Article  Google Scholar 

  37. Malerba R, Nattero J (2012) Pollinator response to flower color polymorphism and floral display in a plant with a single-locus floral color polymorphism: consequences for plant reduction. Ecol Res 27:377–385

    Article  Google Scholar 

  38. Muth M, Papaj DR, Leonard AS (2016) Colour learning when foraging for nectar and pollen: bees learn two colours at once. Biol Lett 11:20150628. doi:10.1098/rsbl.2015.0628

    Article  Google Scholar 

  39. Newman E, Manning J, Anderson B (2014) Matching floral and pollinator traits through guild convergence and pollinator ecotype formation. Ann Bot 113:373–384

    Article  PubMed  Google Scholar 

  40. R Development Core Team (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  41. Rausher MD (2008) Evolutionary transitions in floral color. Int J Plant Sci 169(1):7–21

    CAS  Article  Google Scholar 

  42. Russell AL, Papaj DR (2016) Artificial pollen dispensing flowers and feeders for bee behaviour experiments. J Pollinat Ecol 18:13–22

    Google Scholar 

  43. Russell AL, Golden RE, Leonard AS, Papaj DR (2015) Bees learn preferences for plant species that offer only pollen as a reward. Behav Ecol 00(00):1–10. doi:10.1093/beheco/arv213

    Google Scholar 

  44. Schaefer HM, Ruxton GD (2010) Deception in plants: mimicry or perceptual exploitation? Trends Ecol Evol 24:676–685

    Article  Google Scholar 

  45. Schiestl FP, Johnson SD (2013) Pollinator-mediated evolution of floral signals. Trends Ecol Evol 28:307–315

    Article  PubMed  Google Scholar 

  46. Skorupski P, Chittka L (2010) Differences in photoreceptor processing speed for chromatic and achromatic vision in the bumblebee, Bombus terrestris. J Neurosci 30:3896–3903

    CAS  Article  PubMed  Google Scholar 

  47. ten Cate C, Rowe C (2007) Biases in signal evolution: learning makes a difference. Trends Ecol Evol. doi:10.1016/j.tree.2007.03.006

    PubMed  Google Scholar 

  48. Van der Niet T, Johnson SD (2012) Phylogenetic evidence for pollinator-driven diversification of angiosperms. Trends Ecol Evol 27(6):353–361

    Article  PubMed  Google Scholar 

  49. Van der Niet T, Peakall R, Johnson SD (2014) Pollinator-driven ecological speciation in plants: new evidence and future perspectives. Ann Bot 113:199–211

    Article  PubMed  PubMed Central  Google Scholar 

  50. Waser NM, Price MV (1981) Pollinator choice and stabilizing selection for flower color in Delphinium nelsonii. Evolution 35(2):376–390

    Article  Google Scholar 

  51. Weiss MR (1995) Floral color change: a widespread functional convergence. Am J Bot 82(2):167–185

    Article  Google Scholar 

  52. Weiss MR (1997) Innate colour preferences and flexible colour learning in the pipevine swallowtail. Anim Behav 53:1043–1052

    Article  Google Scholar 

  53. Wessinger CA, Rausher MD (2012) Lessons from flower colour evolution on targets of selection. J Exp Bot 63(16):5741–5749. doi:10.1093/jxb/ers267

    CAS  Article  PubMed  Google Scholar 

  54. Willis JC, Burkill IH (1903) Flowers and insects of Great Britain, Part II. Ann Bot 17:313–349

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Carla Essenberg, Madhu Viswanathan, Matthew Forister, and Kenneth Train for aid with statistical analyses, to Abreeza Zegeer for greenhouse care, to John Wiens from the Arizona-Sonora Desert Museum for plants, and to Sarah White for assistance in running experimental trials.

Funding

This work was supported by a University of Arizona Honors College Undergraduate Research Grant, as well as funding from the Graduate and Professional Student Council, and the National Science Foundation (IOS-1257762 to A.S. Leonard, S.L. Buchmann, and D.R. Papaj).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Avery L. Russell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Russell, A.L., Newman, C.R. & Papaj, D.R. White flowers finish last: pollen-foraging bumble bees show biased learning in a floral color polymorphism. Evol Ecol 31, 173–191 (2017). https://doi.org/10.1007/s10682-016-9848-1

Download citation

Keywords

  • Bumble bee
  • Pollen reward
  • Learning
  • Color polymorphism
  • Biases in learning
  • Preference