Evolutionary Ecology

, Volume 30, Issue 3, pp 471–485 | Cite as

Divergent lineages and conserved niches: using ecological niche modeling to examine the evolutionary patterns of the Nile monitor (Varanus niloticus)

Original Paper


Ecological niche modeling is a useful tool that can support phylogeographic analyses, offering insight into the evolutionary processes that have generated present-day patterns of biodiversity. Findings of ecological divergence across evolutionary lineages can be utilized to bolster inferences of parapatric or sympatric modes of speciation, and provide support for species-level classifications. Conversely, conserved ecological niches across evolutionary timescales are thought to have facilitated allopatric speciation. Here, we examined the climatic niche of three genetic lineages of the Nile monitor (Varanus niloticus) to better understand the processes involved in generating patterns of genetic variation, and to potentially clarify their taxonomic status. We built ecological niche models using genetically confirmed occurrence points from the three evolutionary lineages of V. niloticus, occupying the western, northern, and southern regions of Africa. Pairwise comparisons of climatic niche overlap provided evidence in support of niche conservatism across all V. niloticus lineages. These findings are consistent with an allopatric mode of differentiation. Furthermore, climatic niche conservatism could have played a role in isolating V. niloticus populations during historic climate oscillations, generating the observed genetic patterns across Africa.


Niche conservatism Allopatric divergence Ecological niche modeling (ENM) African biogeography 

Supplementary material

10682_2016_9818_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 19 kb)
10682_2016_9818_MOESM2_ESM.docx (91 kb)
Supplementary material 2 (DOCX 91 kb)


  1. Alvarado-Serrano DF, Knowles LL (2014) Ecological niche models in phylogeographic studies: applications, advances and precautions. Mol Ecol Resour 14:233–248CrossRefPubMedGoogle Scholar
  2. Anderson RP, Gómez-Laverde M, Peterson AT (2002) Geographical distributions of spiny pocket mice in South America: insights from predictive models. Glob Ecol Biogeogr 11:131–141CrossRefGoogle Scholar
  3. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  4. Axelrod D, Raven P (1978) Late cretaceous and tertiary vegetation history of Africa. In: Werger M (ed) Biogeography and ecology of southern Africa. Junk, The Hague, pp 77–130CrossRefGoogle Scholar
  5. Bayless M (1997) The distribution of African monitor lizards (Sauria: Varanidae). Afr J Ecol 35:374–377CrossRefGoogle Scholar
  6. Blair M, Sterling E, Dusch M, Raxworthy C, Pearson R (2013) Ecological divergence and speciation between lemur (Eulemur) sister species in Madagascar. J Evol Biol 26:1790–1801CrossRefPubMedGoogle Scholar
  7. Carnaval AC, Moritz C (2008) Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. J Biogeogr 35:1187–1201CrossRefGoogle Scholar
  8. Coetzee J (1993) African flora since the terminal Jurassic. In: Goldblatt P (ed) Biological relationships between Africa and South America, vol 37. Yale University Press, New Haven, pp 37–61Google Scholar
  9. Coyne JA, Orr HA (2004) Speciation. Sinauer Associates Inc., SunderlandGoogle Scholar
  10. Daudin FM (1802) Histoire naturelle, générale et particulière des reptiles (trans: Ivan Ineich). Paris, FranceGoogle Scholar
  11. Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332:53–58CrossRefPubMedGoogle Scholar
  12. Dayrat B (2005) Towards integrative taxonomy. Biol J Linn Soc 85:407–415CrossRefGoogle Scholar
  13. de Buffrenil V (1995) Monitor hunting. CITES/C&M Int Mag 4:6–20Google Scholar
  14. de Buffrénil V, Castanet J (2000) Age estimation by skeletochronology in the Nile monitor (Varanus niloticus), a highly exploited species. J Herpetol 34:414–424CrossRefGoogle Scholar
  15. De Lisle HF (1996) The natural history of monitor lizards. Krieger Publishing Co., MalabarGoogle Scholar
  16. De Wit M, Stankiewicz J (2006) Changes in surface water supply across Africa with predicted climate change. Science 311:1917–1921CrossRefPubMedGoogle Scholar
  17. Dowell SA, de Buffrénil V, Kolokotronis S-O, Hekkala ER (2015) Fine-scale genetic analysis of the exploited Nile monitor (Varanus niloticus) in Sahelian Africa. BMC Genet 16:32CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dowell SA, Portik DM, de Buffrenil V, Ineich I, Greenbaum E, Kolokotronis S-O, Hekkala E (2016) Molecular data from contemporary and historical collections reveal a complex story of cryptic diversification in the Varanus (Polydaedalus) niloticus species group. Mol Phylogenet Evol 94:591–604. doi:10.1016/j.ympev.2015.10.004 CrossRefPubMedGoogle Scholar
  19. Dubois A (2003) The relationships between taxonomy and conservation biology in the century of extinctions. C R Biol 326:9–21CrossRefGoogle Scholar
  20. Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  21. Evans ME, Smith SA, Flynn RS, Donoghue MJ (2009) Climate, niche evolution, and diversification of the “bird-cage” evening primroses (Oenothera, Sections Anogra and Kleinia). Am Nat 173:225–240CrossRefPubMedGoogle Scholar
  22. Flagstad Ø, Syversten PO, Stenseth NC, Jakobsen KS (2001) Environmental change and rates of evolution: the phylogeographic pattern within the hartebeest complex as related to climatic variation. Proc R Soc Lond Ser B Biol Sci 268:667–677CrossRefGoogle Scholar
  23. Florio A, Ingram C, Rakotondravony H, Louis E, Raxworthy C (2012) Detecting cryptic speciation in the widespread and morphologically conservative carpet chameleon (Furcifer lateralis) of Madagascar. J Evol Biol 25:1399–1414CrossRefPubMedGoogle Scholar
  24. Gent PR, Danabasoglu G, Donner LJ et al (2011) The community climate system model version 4. J Clim 24:4973–4991CrossRefGoogle Scholar
  25. Gomez-Mendoza L, Arriaga L (2007) Modeling the effect of climate change on the distribution of oak and pine species of Mexico. Conserv Biol 21:1545–1555CrossRefPubMedGoogle Scholar
  26. Graham CH, Ron SR, Santos JC, Schneider CJ, Moritz C (2004) Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution 58:1781–1793CrossRefPubMedGoogle Scholar
  27. Haffer J (1969) Speciation in Amazonian forest birds. Science 165:131–137CrossRefPubMedGoogle Scholar
  28. Hekkala E, Shirley MH, Amato G et al (2011) An ancient icon reveals new mysteries: mummy DNA resurrects a cryptic species within the Nile crocodile. Mol Ecol 20:4199–4215CrossRefPubMedGoogle Scholar
  29. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  30. Holt RD (1990) The microevolutionary consequences of climate change. Trends Ecol Evol 5:311–315CrossRefPubMedGoogle Scholar
  31. Hugall A, Moritz C, Moussalli A, Stanisic J (2002) Reconciling paleodistribution models and comparative phylogeography in the Wet Tropics rainforest land snail Gnarosophia bellendenkerensis (Brazier 1875). Proc Natl Acad Sci USA 99:6112–6117CrossRefPubMedPubMedCentralGoogle Scholar
  32. Jenkins M, Broad S (1994) International trade in reptile skins: a review and analysis of the main consumer markets, 1983–1991. Traffic International. Report no. 1858500478Google Scholar
  33. Keyghobadi N, Roland J, Strobeck C (1999) Influence of landscape on the population genetic structure of the alpine butterfly Parnassius smintheus (Papilionidae). Mol Ecol 8:1481–1495CrossRefPubMedGoogle Scholar
  34. Knouft JH, Losos JB, Glor RE, Kolbe JJ (2006) Phylogenetic analysis of the evolution of the niche in lizards of the Anolis sagrei group. Ecology 87:S29–S38CrossRefPubMedGoogle Scholar
  35. Kozak KH, Wiens J (2006) Does niche conservatism promote speciation? A case study in North American salamanders. Evolution 60:2604–2621CrossRefPubMedGoogle Scholar
  36. Leaché AD, Koo MS, Spencer CL, Papenfuss TJ, Fisher RN, McGuire JA (2009) Quantifying ecological, morphological, and genetic variation to delimit species in the coast horned lizard species complex (Phrynosoma). Proc Natl Acad Sci USA 106:12418–12423CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lenz S (2004) Varanus niloticus. In: Pianka ER, King D, King RA (eds) Varanoid lizards of the world. Indiana University Press, Bloomington, pp 133–138Google Scholar
  38. Lorenzen ED, Heller R, Siegismund HR (2012) Comparative phylogeography of African savannah ungulates. Mol Ecol 21:3656–3670CrossRefPubMedGoogle Scholar
  39. May RM (1990) Taxonomy as destiny. Nature 347:129–130CrossRefGoogle Scholar
  40. Mendez M, Rosenbaum HC, Subramaniam A, Yackulic C, Bordino P (2010) Isolation by environmental distance in mobile marine species: molecular ecology of franciscana dolphins at their southern range. Mol Ecol 19:2212–2228CrossRefPubMedGoogle Scholar
  41. Midgley GF, Hannah L, Millar D, Thuiller W, Booth A (2003) Developing regional and species-level assessments of climate change impacts on biodiversity in the Cape Floristic Region. Biol Conserv 112:87–97CrossRefGoogle Scholar
  42. Moodley Y, Bruford MW (2007) Molecular biogeography: towards an integrated framework for conserving pan-African biodiversity. PLoS One 2:e454CrossRefPubMedPubMedCentralGoogle Scholar
  43. Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecol Biogeogr 12:361–371CrossRefGoogle Scholar
  44. Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117CrossRefGoogle Scholar
  45. Pernetta AP (2009) Monitoring the trade: using the CITES database to examine the global trade in live monitor lizards (Varanus spp.). Biawak 3:37–45Google Scholar
  46. Peterson AT, Holt RD (2003) Niche differentiation in Mexican birds: using point occurrences to detect ecological innovation. Ecol Lett 6:774–782CrossRefGoogle Scholar
  47. Peterson A, Soberón J, Sánchez-Cordero V (1999) Conservatism of ecological niches in evolutionary time. Science 285:1265–1267CrossRefPubMedGoogle Scholar
  48. Peterson AT, Ortega-Huerta MA, Bartley J, Sánchez-Cordero V, Soberón J, Buddemeier RH, Stockwell DR (2002) Future projections for Mexican faunas under global climate change scenarios. Nature 416:626–629CrossRefPubMedGoogle Scholar
  49. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  50. Plana V (2004) Mechanisms and tempo of evolution in the African Guineo-Congolian rainforest. Philos Trans R Soc Lond Ser B Biol Sci 359:1585–1594CrossRefGoogle Scholar
  51. Raxworthy CJ, Ingram CM, Rabibisoa N, Pearson RG (2007) Applications of ecological niche modeling for species delimitation: a review and empirical evaluation using day geckos (Phelsuma) from Madagascar. Syst Biol 56:907–923CrossRefPubMedGoogle Scholar
  52. Rissler LJ, Apodaca JJ (2007) Adding more ecology into species delimitation: ecological niche models and phylogeography help define cryptic species in the black salamander (Aneides flavipunctatus). Syst Biol 56:924–942CrossRefPubMedGoogle Scholar
  53. Schlegel H (1844) Abbildungen neuer oder unvollständig bekannter Amphibien: nach der Natur oder dem Leben entworfen. Verlag von Arnz & Comp., DüsseldorfGoogle Scholar
  54. Schliewen U, Rassmann K, Markmann M, Markert J, Kocher T, Tautz D (2001) Genetic and ecological divergence of a monophyletic cichlid species pair under fully sympatric conditions in Lake Ejagham, Cameroon. Mol Ecol 10:1471–1488CrossRefPubMedGoogle Scholar
  55. Schoener TW (1968) The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49:704–726CrossRefGoogle Scholar
  56. Sites JW, Marshall JC (2003) Delimiting species: a Renaissance issue in systematic biology. Trends Ecol Evol 18:462–470CrossRefGoogle Scholar
  57. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  58. Thomas CD, Cameron A, Green RE et al (2004) Extinction risk from climate change. Nature 427:145–148CrossRefPubMedGoogle Scholar
  59. Thuiller W, Lavorel S, Araujo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250CrossRefPubMedPubMedCentralGoogle Scholar
  60. Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62:2868–2883CrossRefPubMedGoogle Scholar
  61. Warren DL, Glor RE, Turelli M (2010) ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33:607–611CrossRefGoogle Scholar
  62. Welton LJ, Travers SL, Siler CD, Brown RM (2014) Integrative taxonomy and phylogeny-based species delimitation of Philippine water monitor lizards (Varanus salvator Complex) with descriptions of two new cryptic species. Zootaxa 3881:201–227CrossRefPubMedGoogle Scholar
  63. Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New YorkCrossRefGoogle Scholar
  64. Wiens JJ (2004a) Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution 58:193–197CrossRefPubMedGoogle Scholar
  65. Wiens JJ (2004b) What is speciation and how should we study it? Am Nat 163:914–923CrossRefPubMedGoogle Scholar
  66. Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36:519–539Google Scholar
  67. Wiens JJ, Ackerly DD, Allen AP et al (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 13:1310–1324CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Biological SciencesFordham UniversityBronxUSA

Personalised recommendations