Skip to main content
Log in

Divergent lineages and conserved niches: using ecological niche modeling to examine the evolutionary patterns of the Nile monitor (Varanus niloticus)

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Ecological niche modeling is a useful tool that can support phylogeographic analyses, offering insight into the evolutionary processes that have generated present-day patterns of biodiversity. Findings of ecological divergence across evolutionary lineages can be utilized to bolster inferences of parapatric or sympatric modes of speciation, and provide support for species-level classifications. Conversely, conserved ecological niches across evolutionary timescales are thought to have facilitated allopatric speciation. Here, we examined the climatic niche of three genetic lineages of the Nile monitor (Varanus niloticus) to better understand the processes involved in generating patterns of genetic variation, and to potentially clarify their taxonomic status. We built ecological niche models using genetically confirmed occurrence points from the three evolutionary lineages of V. niloticus, occupying the western, northern, and southern regions of Africa. Pairwise comparisons of climatic niche overlap provided evidence in support of niche conservatism across all V. niloticus lineages. These findings are consistent with an allopatric mode of differentiation. Furthermore, climatic niche conservatism could have played a role in isolating V. niloticus populations during historic climate oscillations, generating the observed genetic patterns across Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvarado-Serrano DF, Knowles LL (2014) Ecological niche models in phylogeographic studies: applications, advances and precautions. Mol Ecol Resour 14:233–248

    Article  PubMed  Google Scholar 

  • Anderson RP, Gómez-Laverde M, Peterson AT (2002) Geographical distributions of spiny pocket mice in South America: insights from predictive models. Glob Ecol Biogeogr 11:131–141

    Article  Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

    Google Scholar 

  • Axelrod D, Raven P (1978) Late cretaceous and tertiary vegetation history of Africa. In: Werger M (ed) Biogeography and ecology of southern Africa. Junk, The Hague, pp 77–130

    Chapter  Google Scholar 

  • Bayless M (1997) The distribution of African monitor lizards (Sauria: Varanidae). Afr J Ecol 35:374–377

    Article  Google Scholar 

  • Blair M, Sterling E, Dusch M, Raxworthy C, Pearson R (2013) Ecological divergence and speciation between lemur (Eulemur) sister species in Madagascar. J Evol Biol 26:1790–1801

    Article  CAS  PubMed  Google Scholar 

  • Carnaval AC, Moritz C (2008) Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic forest. J Biogeogr 35:1187–1201

    Article  Google Scholar 

  • Coetzee J (1993) African flora since the terminal Jurassic. In: Goldblatt P (ed) Biological relationships between Africa and South America, vol 37. Yale University Press, New Haven, pp 37–61

    Google Scholar 

  • Coyne JA, Orr HA (2004) Speciation. Sinauer Associates Inc., Sunderland

    Google Scholar 

  • Daudin FM (1802) Histoire naturelle, générale et particulière des reptiles (trans: Ivan Ineich). Paris, France

  • Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332:53–58

    Article  CAS  PubMed  Google Scholar 

  • Dayrat B (2005) Towards integrative taxonomy. Biol J Linn Soc 85:407–415

    Article  Google Scholar 

  • de Buffrenil V (1995) Monitor hunting. CITES/C&M Int Mag 4:6–20

    Google Scholar 

  • de Buffrénil V, Castanet J (2000) Age estimation by skeletochronology in the Nile monitor (Varanus niloticus), a highly exploited species. J Herpetol 34:414–424

    Article  Google Scholar 

  • De Lisle HF (1996) The natural history of monitor lizards. Krieger Publishing Co., Malabar

    Google Scholar 

  • De Wit M, Stankiewicz J (2006) Changes in surface water supply across Africa with predicted climate change. Science 311:1917–1921

    Article  PubMed  Google Scholar 

  • Dowell SA, de Buffrénil V, Kolokotronis S-O, Hekkala ER (2015) Fine-scale genetic analysis of the exploited Nile monitor (Varanus niloticus) in Sahelian Africa. BMC Genet 16:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Dowell SA, Portik DM, de Buffrenil V, Ineich I, Greenbaum E, Kolokotronis S-O, Hekkala E (2016) Molecular data from contemporary and historical collections reveal a complex story of cryptic diversification in the Varanus (Polydaedalus) niloticus species group. Mol Phylogenet Evol 94:591–604. doi:10.1016/j.ympev.2015.10.004

    Article  PubMed  Google Scholar 

  • Dubois A (2003) The relationships between taxonomy and conservation biology in the century of extinctions. C R Biol 326:9–21

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Evans ME, Smith SA, Flynn RS, Donoghue MJ (2009) Climate, niche evolution, and diversification of the “bird-cage” evening primroses (Oenothera, Sections Anogra and Kleinia). Am Nat 173:225–240

    Article  PubMed  Google Scholar 

  • Flagstad Ø, Syversten PO, Stenseth NC, Jakobsen KS (2001) Environmental change and rates of evolution: the phylogeographic pattern within the hartebeest complex as related to climatic variation. Proc R Soc Lond Ser B Biol Sci 268:667–677

    Article  CAS  Google Scholar 

  • Florio A, Ingram C, Rakotondravony H, Louis E, Raxworthy C (2012) Detecting cryptic speciation in the widespread and morphologically conservative carpet chameleon (Furcifer lateralis) of Madagascar. J Evol Biol 25:1399–1414

    Article  CAS  PubMed  Google Scholar 

  • Gent PR, Danabasoglu G, Donner LJ et al (2011) The community climate system model version 4. J Clim 24:4973–4991

    Article  Google Scholar 

  • Gomez-Mendoza L, Arriaga L (2007) Modeling the effect of climate change on the distribution of oak and pine species of Mexico. Conserv Biol 21:1545–1555

    Article  PubMed  Google Scholar 

  • Graham CH, Ron SR, Santos JC, Schneider CJ, Moritz C (2004) Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evolution 58:1781–1793

    Article  PubMed  Google Scholar 

  • Haffer J (1969) Speciation in Amazonian forest birds. Science 165:131–137

    Article  CAS  PubMed  Google Scholar 

  • Hekkala E, Shirley MH, Amato G et al (2011) An ancient icon reveals new mysteries: mummy DNA resurrects a cryptic species within the Nile crocodile. Mol Ecol 20:4199–4215

    Article  CAS  PubMed  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Holt RD (1990) The microevolutionary consequences of climate change. Trends Ecol Evol 5:311–315

    Article  CAS  PubMed  Google Scholar 

  • Hugall A, Moritz C, Moussalli A, Stanisic J (2002) Reconciling paleodistribution models and comparative phylogeography in the Wet Tropics rainforest land snail Gnarosophia bellendenkerensis (Brazier 1875). Proc Natl Acad Sci USA 99:6112–6117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins M, Broad S (1994) International trade in reptile skins: a review and analysis of the main consumer markets, 1983–1991. Traffic International. Report no. 1858500478

  • Keyghobadi N, Roland J, Strobeck C (1999) Influence of landscape on the population genetic structure of the alpine butterfly Parnassius smintheus (Papilionidae). Mol Ecol 8:1481–1495

    Article  PubMed  Google Scholar 

  • Knouft JH, Losos JB, Glor RE, Kolbe JJ (2006) Phylogenetic analysis of the evolution of the niche in lizards of the Anolis sagrei group. Ecology 87:S29–S38

    Article  PubMed  Google Scholar 

  • Kozak KH, Wiens J (2006) Does niche conservatism promote speciation? A case study in North American salamanders. Evolution 60:2604–2621

    Article  PubMed  Google Scholar 

  • Leaché AD, Koo MS, Spencer CL, Papenfuss TJ, Fisher RN, McGuire JA (2009) Quantifying ecological, morphological, and genetic variation to delimit species in the coast horned lizard species complex (Phrynosoma). Proc Natl Acad Sci USA 106:12418–12423

    Article  PubMed  PubMed Central  Google Scholar 

  • Lenz S (2004) Varanus niloticus. In: Pianka ER, King D, King RA (eds) Varanoid lizards of the world. Indiana University Press, Bloomington, pp 133–138

    Google Scholar 

  • Lorenzen ED, Heller R, Siegismund HR (2012) Comparative phylogeography of African savannah ungulates. Mol Ecol 21:3656–3670

    Article  CAS  PubMed  Google Scholar 

  • May RM (1990) Taxonomy as destiny. Nature 347:129–130

    Article  Google Scholar 

  • Mendez M, Rosenbaum HC, Subramaniam A, Yackulic C, Bordino P (2010) Isolation by environmental distance in mobile marine species: molecular ecology of franciscana dolphins at their southern range. Mol Ecol 19:2212–2228

    Article  CAS  PubMed  Google Scholar 

  • Midgley GF, Hannah L, Millar D, Thuiller W, Booth A (2003) Developing regional and species-level assessments of climate change impacts on biodiversity in the Cape Floristic Region. Biol Conserv 112:87–97

    Article  Google Scholar 

  • Moodley Y, Bruford MW (2007) Molecular biogeography: towards an integrated framework for conserving pan-African biodiversity. PLoS One 2:e454

    Article  PubMed  PubMed Central  Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecol Biogeogr 12:361–371

    Article  Google Scholar 

  • Pearson RG, Raxworthy CJ, Nakamura M, Townsend Peterson A (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117

    Article  Google Scholar 

  • Pernetta AP (2009) Monitoring the trade: using the CITES database to examine the global trade in live monitor lizards (Varanus spp.). Biawak 3:37–45

    Google Scholar 

  • Peterson AT, Holt RD (2003) Niche differentiation in Mexican birds: using point occurrences to detect ecological innovation. Ecol Lett 6:774–782

    Article  Google Scholar 

  • Peterson A, Soberón J, Sánchez-Cordero V (1999) Conservatism of ecological niches in evolutionary time. Science 285:1265–1267

    Article  CAS  PubMed  Google Scholar 

  • Peterson AT, Ortega-Huerta MA, Bartley J, Sánchez-Cordero V, Soberón J, Buddemeier RH, Stockwell DR (2002) Future projections for Mexican faunas under global climate change scenarios. Nature 416:626–629

    Article  CAS  PubMed  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Plana V (2004) Mechanisms and tempo of evolution in the African Guineo-Congolian rainforest. Philos Trans R Soc Lond Ser B Biol Sci 359:1585–1594

    Article  Google Scholar 

  • Raxworthy CJ, Ingram CM, Rabibisoa N, Pearson RG (2007) Applications of ecological niche modeling for species delimitation: a review and empirical evaluation using day geckos (Phelsuma) from Madagascar. Syst Biol 56:907–923

    Article  PubMed  Google Scholar 

  • Rissler LJ, Apodaca JJ (2007) Adding more ecology into species delimitation: ecological niche models and phylogeography help define cryptic species in the black salamander (Aneides flavipunctatus). Syst Biol 56:924–942

    Article  PubMed  Google Scholar 

  • Schlegel H (1844) Abbildungen neuer oder unvollständig bekannter Amphibien: nach der Natur oder dem Leben entworfen. Verlag von Arnz & Comp., Düsseldorf

    Google Scholar 

  • Schliewen U, Rassmann K, Markmann M, Markert J, Kocher T, Tautz D (2001) Genetic and ecological divergence of a monophyletic cichlid species pair under fully sympatric conditions in Lake Ejagham, Cameroon. Mol Ecol 10:1471–1488

    Article  CAS  PubMed  Google Scholar 

  • Schoener TW (1968) The Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology 49:704–726

    Article  Google Scholar 

  • Sites JW, Marshall JC (2003) Delimiting species: a Renaissance issue in systematic biology. Trends Ecol Evol 18:462–470

    Article  Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Thomas CD, Cameron A, Green RE et al (2004) Extinction risk from climate change. Nature 427:145–148

    Article  CAS  PubMed  Google Scholar 

  • Thuiller W, Lavorel S, Araujo MB, Sykes MT, Prentice IC (2005) Climate change threats to plant diversity in Europe. Proc Natl Acad Sci USA 102:8245–8250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62:2868–2883

    Article  PubMed  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2010) ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33:607–611

    Article  Google Scholar 

  • Welton LJ, Travers SL, Siler CD, Brown RM (2014) Integrative taxonomy and phylogeny-based species delimitation of Philippine water monitor lizards (Varanus salvator Complex) with descriptions of two new cryptic species. Zootaxa 3881:201–227

    Article  PubMed  Google Scholar 

  • Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  • Wiens JJ (2004a) Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution 58:193–197

    Article  PubMed  Google Scholar 

  • Wiens JJ (2004b) What is speciation and how should we study it? Am Nat 163:914–923

    Article  PubMed  Google Scholar 

  • Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36:519–539

  • Wiens JJ, Ackerly DD, Allen AP et al (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 13:1310–1324

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to sincerely thank Mary Blair, Eleanor Sterling, and Camilo Sanin for their assistance, guidance, and support throughout this project. Additionally, we would like to thank Vivian de Buffrénil, Daniel Portik, Ivan Ineich, Eli Greenbaum, Richard Fergusson, and Louis la Grange for providing GPS coordinates from contemporary samples. Occurrence records from historic samples were provided by the American Museum of Natural History, California Academy of Sciences, Museum of Comparative Zoology (Harvard), Muséum national d’Histoire naturelle-RA, Museum of Vertebrate Zoology, Natural History Museum of London, University of Michigan Museum of Zoology, Smithsonian National Museum of Natural History, Burke Museum of Natural History and Culture, Port Elizabeth Museum, and the South Africa Biodiversity Institute. Lastly, we are grateful for the editorial assistance from Tim Vines and Leslie Rissler at Axios Review, as well as the three anonymous reviewers who contributed valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie A. Dowell.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Supplementary material 2 (DOCX 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dowell, S.A., Hekkala, E.R. Divergent lineages and conserved niches: using ecological niche modeling to examine the evolutionary patterns of the Nile monitor (Varanus niloticus). Evol Ecol 30, 471–485 (2016). https://doi.org/10.1007/s10682-016-9818-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-016-9818-7

Keywords

Navigation