Evolutionary Ecology

, Volume 30, Issue 2, pp 251–265 | Cite as

Effects of parental care on the accumulation and release of cryptic genetic variation: review of mechanisms and a case study of dung beetles

  • Emilie C. Snell-RoodEmail author
  • Melissa Burger
  • Quinton Hutton
  • Armin P. Moczek
Original Paper


Cryptic genetic variation plays an important role in the emergence of disease and evolutionary responses to environmental change. Focusing on parental care behavior, we discuss three mechanisms by which behavior can affect the accumulation and release of cryptic genetic variation. We illustrate how these hypotheses might be tested with preliminary data from Onthophagus dung beetles, which provide indirect parental care by provisioning their offspring with dung and sheltering them underground. The environmental stress hypothesis states that parental care reduces selection intensity on novel mutations when increased parental care results in a less stressful offspring environment. A review of recent literature, coupled with an irradiation experiment in beetles, suggests this mechanism may operate in some situations, but depends on the types of mutations under consideration. The relaxed selection hypothesis states that genes expressed in low care environments should be under weakened selection because their phenotypic manifestations are exposed to selection less frequently, and thus are prone to mutation accumulation. If parental care is reduced, for instance due to population-wide environmental changes, such cryptic variation may exert phenotypic effects, becoming exposed to selection. There is substantial theory in support of this hypothesis, and comparisons between beetle populations that differ in parental care behavior further support this idea. Finally, the compensation hypothesis states that organisms with direct parental care may be able to respond to cues or signals from offspring and compensate for genetic variants. We highlight the extensive discussion of this hypothesis with respect to medical care and genetic load in humans and explore invertebrate systems that may constitute powerful models for further inquiry. In summary, several mechanisms exist by which care behavior may shape the accumulation and release of cryptic genetic variation, thereby affecting the potential emergence of diseases and the rate and direction of evolutionary responses to novel environments.


Cryptic genetic variation Parental care Life history Niche construction Buffering 



We are grateful to Thom Kaufman and Kevin Cook, who provided advice on mutagenesis and arranged irradiation treatments. Joanna Masel and Etienne Rajon provided thoughtful discussion and insights. Ruth Shaw offered important analysis advice, especially with respect to quantitative genetics analysis. Wendy Anderson and Erin Yoder helped with aspects of beetle care. This manuscript was substantially improved based on comments from two anonymous reviewers. ESR was supported during part of this project by an NIH NRSA F32GM083830 investigating the importance of relaxed selection on development. Additional support was provided by National Science Foundation grant IOS 0820411 and IOS 0718522 to APM. The content of this paper does not necessarily represent the official views of the National Institutes of Health or the National Science Foundation.


  1. Agrawal AF, Whitlock MC (2010) Environmental duress and epistasis: how does stress affect the strength of selection on new mutations? Trends Ecol Evol 25(8):450–458. doi: 10.1016/j.tree.2010.05.003 CrossRefPubMedGoogle Scholar
  2. Aubin-Horth N, Renn SCP (2009) Genomic reaction norms: using integrative biology to understand molecular mechanisms of phenotypic plasticity. Mol Ecol 18(18):3763–3780. doi: 10.1111/j.1365-294X.2009.04313.x CrossRefPubMedGoogle Scholar
  3. Bergman A, Siegal ML (2003) Evolutionary capacitance as a general feature of complex gene networks. Nature 424(6948):549–552CrossRefPubMedGoogle Scholar
  4. Brown JL, Morales V, Summers K (2010) A key ecological trait drove the evolution of biparental care and monogamy in an amphibian. Am Nat 175(4):436–446. doi: 10.1086/650727 CrossRefPubMedGoogle Scholar
  5. Buzatto BA, Tomkins JL, Simmons LW (2012) Maternal effects on male weaponry: female dung beetles produce major sons with longer horns when they perceive higher population density. BMC Evol Biol. doi: 10.1186/1471-2148-12-118 PubMedPubMedCentralGoogle Scholar
  6. Chakravarti A (1999) Population genetics—making sense out of sequence. Nat Genet 21:56–60CrossRefPubMedGoogle Scholar
  7. Choe J, Crespi B (1997) The evolution of social behaviour in insects and Arachnids. Cambridge University Press, New YorkCrossRefGoogle Scholar
  8. Clutton-Brock T (1991) The evolution of parental care. Princeton University Press, PrincetonGoogle Scholar
  9. Conway CJ, Martin TE (2000) Evolution of passerine incubation behavior: influence of food, temperature, and nest predation. Evolution 54(2):670–685CrossRefPubMedGoogle Scholar
  10. Cooper DN, Chen JM, Ball EV, Howells K, Mort M, Phillips AD et al (2010) Genes, mutations, and human inherited disease at the dawn of the age of personalized genomics. Hum Mutat 31(6):631–655. doi: 10.1002/humu.21260 CrossRefPubMedGoogle Scholar
  11. Costa J (2006) The other insect societies. Harvard University Press, CambridgeGoogle Scholar
  12. Crow JF (1997) The high spontaneous mutation rate: is it a health risk? Proc Natl Acad Sci USA 94(16):8380–8386CrossRefPubMedPubMedCentralGoogle Scholar
  13. de Roode JC, Lefevre T, Hunter MD (2013) Self-medication in animals. Science 340(6129):150–151. doi: 10.1126/science.1235824 CrossRefPubMedGoogle Scholar
  14. Douglas AE (2009) The microbial dimension in insect nutritional ecology. Funct Ecol 23(1):38–47. doi: 10.1111/j.1365-2435.2008.01442.x CrossRefGoogle Scholar
  15. Drown DM, Wade MJ (2014) Runaway coevolution: adaptation to heritable and nonheritable environments. Evolution 68(10):3039–3046. doi: 10.1111/evo.12470 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Edwards PB (1988) Field ecology of a brood-caring dung beetle Kheper nigroaeneus—habitat predictability and life history strategy. Oecologia 75(4):527–534CrossRefGoogle Scholar
  17. Emlen DJ (1997) Alternative reproductive tactics and male-dimorphism in the horned beetle Onthophagus acuminatus (Coleoptera:scarabaeidae). Behav Ecol Sociobiol 41(5):335–341CrossRefGoogle Scholar
  18. Estes AM, Hearn DJ, Snell-Rood EC, Feindler M, Feeser K, Abebe T et al (2013) Brood ball-mediated transmission of microbiome members in the dung beetle, Onthophagus taurus (Coleoptera: Scarabaeidae). PLoS ONE. doi: 10.1371/journal.pone.0079061 Google Scholar
  19. Feldhaar H (2011) Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecol Entomol 36(5):533–543. doi: 10.1111/j.1365-2311.2011.01318.x CrossRefGoogle Scholar
  20. Fernandez J, LopezFanjul C (1997) Spontaneous mutational genotype-environment interaction for fitness-related traits in Drosophila melanogaster. Evolution 51(3):856–864CrossRefGoogle Scholar
  21. Fox CW, Czesak ME (2000) Evolutionary ecology of progeny size in arthropods. Annu Rev Entomol 45:341–369CrossRefPubMedGoogle Scholar
  22. Frederickson ME, Greene MJ, Gordon D (2005) Ecology: ‘Devil’s gardens’ bedevilled by ants. Nature 437:495–496CrossRefPubMedGoogle Scholar
  23. Fry JD, Heinsohn SL, Mackay TFC (1996) The contribution of new mutations to genotype-environment interaction for fitness in Drosophila melanogaster. Evolution 50(6):2316–2327CrossRefGoogle Scholar
  24. Ghalambor CK, McKay JK, Carrol SP, Reznick DN (2007) Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct Ecol 21:394–407CrossRefGoogle Scholar
  25. Gibson G (2009) Decanalization and the origin of complex disease. Nat Rev Genet 10(2):134–140. doi: 10.1038/nrg2502 CrossRefPubMedGoogle Scholar
  26. Gibson G, Dworkin I (2004) Uncovering cryptic genetic variation. Nat Rev Genet 5(9):681–690. doi: 10.1038/nrg1426 CrossRefPubMedGoogle Scholar
  27. Halffter G, Edmonds WD (1982) The nesting behavior of dung beetles (Scarabaeinae). An ecological and evolutive approach. Publicaciones Instituto de Ecologia Mexico. Instituto du Ecologia, Mexico DF, pp 1–176Google Scholar
  28. Halfter G, Matthews E (1966) The natural history of dung beetles of the subfamily Scarabaeinae. Folia Entomologica Mexicana 12–14:1–312Google Scholar
  29. Halligan DL, Keightley PD (2009) Spontaneous mutation accumulation studies in evolutionary genetics. Annu Rev Ecol Evol Syst 40:151–172. doi: 10.1146/annurev.ecolsys.39.110707.173437 CrossRefGoogle Scholar
  30. Hermisson J, Wagner GP (2004) The population genetic theory of hidden variation and genetic robustness. Genetics 168(4):2271–2284. doi: 10.1534/gentics.104.029173 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Hodgins-Davis A, Townsend JP (2009) Evolving gene expression: from G to E to GxE. Trends Ecol Evol 24(12):649–658CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hoffmann AA, Merila J (1999) Heritable variation and evolution under favourable and unfavourable conditions. Trends Ecol Evol 14(3):96–101CrossRefPubMedGoogle Scholar
  33. Huey RB, Hertz PE, Sinervo B (2003) Behavioral drive versus behavioral inertia in evolution: a null model approach. Am Nat 161(3):357–366. doi: 10.1086/346135 CrossRefPubMedGoogle Scholar
  34. Hunt J, Simmons LW (2000) Maternal and paternal effects on offspring phenotype in the dung beetle Onthophagus taurus. Evolution 54(3):936–941CrossRefPubMedGoogle Scholar
  35. Hunt J, Simmons LW (2002) The genetics of maternal care: direct and indirect genetic effects on phenotype in the dung beetle Onthophagus taurus. Proc Natl Acad Sci USA 99(10):6828–6832. doi: 10.1073/pnas.092676199 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hunt J, Simmons LW (2004) Optimal maternal investment in the dung beetle Onthophagus taurus? Behav Ecol Sociobiol 55(3):302–312. doi: 10.1007/s00265-003-0705-1 CrossRefGoogle Scholar
  37. Hunt J, Simmons LW, Kotiaho JS (2002) A cost of maternal care in the dung beetle Onthophagus taurus? J Evol Biol 15(1):57–64. doi: 10.1046/j.1420-9101.2002.00374.x CrossRefGoogle Scholar
  38. Jasnos L, Tomala K, Paczesniak D, Korona R (2008) Interactions between stressful environment and gene deletions alleviate the expected average loss of fitness in yeast. Genetics 178(4):2105–2111. doi: 10.1534/genetics.107.08453.1 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kawecki TJ (1994) Accumulation of deleterious mutations and the evolutionary cost of being a generalist. Am Nat 144(5):833–838CrossRefGoogle Scholar
  40. Kishi S, Nishida T (2006) Adjustment of parental investment in the dung beetle Onthophagus atripennis (Col., Scarabaeidae). Ethology 112(12):1239–1245. doi: 10.1111/j.1439-2006.01284.x CrossRefGoogle Scholar
  41. Kondrashov AS, Crow JF (1993) A molecular approach to estimating the human deleterious mutation rate. Hum Mutat 2(3):229–234CrossRefPubMedGoogle Scholar
  42. Kondrashov AS, Houle D (1994) Genotype-environment interactions and the estimation of the genomic mutation rate in Drosophila melanogaster. Proc R Soc Lond Series B Biol Sci 258(1353):221–227CrossRefGoogle Scholar
  43. Laland KN, Odling-Smee FJ, Feldman MW (1996) The evolutionary consequences of niche construction: a theoretical investigation using two-locus theory. J Evol Biol 9(3):293–316CrossRefGoogle Scholar
  44. Laland KN, Odling-Smee FJ, Feldman MW (1999) Evolutionary consequences of niche construction and their implications for ecology. Proc Natl Acad Sci USA 96(18):10242–10247CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lande R, Shannon S (1996) The role of genetic variation in adaptation and population persistence in a changing environment. Evolution 50(1):434–437. doi: 10.2307/2410812 CrossRefGoogle Scholar
  46. Ledon-Rettig CC, Pfennig DW, Crespi EJ (2010) Diet and hormonal manipulation reveal cryptic genetic variation: implications for the evolution of novel feeding strategies. Proc R Soc Lond Series B Biol Sci 277(1700):3569–3578. doi: 10.1098/rspb.2010.0877 CrossRefGoogle Scholar
  47. Levy SF, Siegal ML (2008) Network hubs buffer environmental variation in Saccharomyces cerevisiae. PLoS Biol 6(11):e264. doi: 10.1371/journal.pbio.0060264 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lock JE, Smiseth PT, Moore PJ, Moore AJ (2007) Coadaptation of prenatal and postnatal maternal effects. Am Nat 170(5):709–718. doi: 10.1086/521963 CrossRefPubMedGoogle Scholar
  49. Lynch M (2010) Rate, molecular spectrum, and consequences of human mutation. Proc Natl Acad Sci USA 107(3):961–968. doi: 10.1073/pnas.0912629107 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Lynch M, Blanchard J, Houle D, Kibota T, Schultz S, Vassilieva L et al (1999) Perspective: spontaneous deleterious mutation. Evolution 53(3):645–663CrossRefGoogle Scholar
  51. Macagno A, Moczek A, Pizzo A (2016) Rapid divergence of nesting depth and digging appendages among tunneling dung beetle populations and species. Am Nat (in press)Google Scholar
  52. Mank JE, Promislow DEL, Avise JC (2005) Phylogenetic perspectives in the evolution of parental care in ray-finned fishes. Evolution 59(7):1570–1578. doi: 10.1554/04-734 CrossRefPubMedGoogle Scholar
  53. Martin G, Lenormand T (2006) The fitness effect of mutations across environments: a survey in light of fitness landscape models. Evolution 60(12):2413–2427CrossRefPubMedGoogle Scholar
  54. Masel J (2006) Cryptic genetic variation is enriched for potential adaptations. Genetics 172(3):1985–1991. doi: 10.1534/genetics.105.051649 CrossRefPubMedPubMedCentralGoogle Scholar
  55. McGuigan K, Sgro CM (2009) Evolutionary consequences of cryptic genetic variation. Trends Ecol Evol 24(6):305–311. doi: 10.1016/j.tree.2009.02.001 CrossRefPubMedGoogle Scholar
  56. Mitchell-Olds T, Schmitt J (2006) Genetic mechanisms and evolutionary significance of natural variation in Arabidopsis. Nature 441(7096):947–952. doi: 10.1038/nature04878 CrossRefPubMedGoogle Scholar
  57. Moczek AP (1998) Horn polyphenism in the beetle Onthophagus taurus: larval diet quality and plasticity in parental investment determine adult body size and male horn morphology. Behav Ecol 9(6):636–641CrossRefGoogle Scholar
  58. Moczek AP (1999) Facultative paternal investment in the polyphenic beetle Onthophagus taurus: the role of male morphology and social context. Behav Ecol 10(6):641–647CrossRefGoogle Scholar
  59. Muller HJ (1950) Our load of mutations. Am J Hum Genet 2(2):111–176PubMedPubMedCentralGoogle Scholar
  60. Odling-Smee F, Laland K, Feldman M (2003) Niche construction: the neglected process in evolution monographs in population biology 37. Princeton University Press, PrincetonGoogle Scholar
  61. Pajni HR, Virk N (1978) Irradiation induced sterility in males and females of Tribolium castaneum Herbst (Tenebrionidae: Coleoptera). Curr Sci 47(5):175Google Scholar
  62. Rajon E, Masel J (2011) Evolution of molecular error rates and the consequences for evolvability. Proc Natl Acad Sci USA 108(3):1082–1087. doi: 10.1073/pnas.1012918108 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Renwick JAA, Chew FS (1994) Oviposition behavior in Lepidoptera. Annu Rev Entomol 39:377–400CrossRefGoogle Scholar
  64. Reynolds JD, Goodwin NB, Freckleton RP (2002) Evolutionary transitions in parental care and live bearing in vertebrates. Philos Trans R Soc B Biol Sci 357(1419):269–281. doi: 10.1098/rstb.2001.0930 CrossRefGoogle Scholar
  65. Royle N, Smiseth P, Kolliker M (2012) The evolution of parental care. Oxford University Press, New YorkCrossRefGoogle Scholar
  66. Rutherford SL (2000) From genotype to phenotype: buffering mechanisms and the storage of genetic information. BioEssays 22:1095–1105CrossRefPubMedGoogle Scholar
  67. Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396(6709):336–342CrossRefPubMedGoogle Scholar
  68. Saltz JB, Foley BR (2011) Natural genetic variation in social niche construction: social effects of aggression drive disruptive sexual selection in Drosophila melanogaster. Am Nat 177(5):645–654. doi: 10.1086/659631 CrossRefPubMedGoogle Scholar
  69. Saltz JB, Nuzhdin SV (2014) Genetic variation in niche construction: implications for development and evolutionary genetics. Trends Ecol Evol 29(1):8–14. doi: 10.1016/j.tree.2013.09.011 CrossRefPubMedGoogle Scholar
  70. Schlichting CD (2008) Hidden reaction norms, cryptic genetic variation, and evolvability. In Year in evolutionary biology 2008 (Vol. 1133, pp 187–203, Annals of the New York Academy of Sciences). Oxford: Blackwell PublishingGoogle Scholar
  71. Scott MP (1998) The ecology and behavior of burying beetles. Annu Rev Entomol 43:595–618CrossRefPubMedGoogle Scholar
  72. Scott MP, Traniello JFA (1990) Behavioral and ecological correlates of male and female parental care and reproductive success in burying beetles (Nicrophorus spp). Anim Behav 39:274–283CrossRefGoogle Scholar
  73. Shabalina SA, Yampolsky LY, Kondrashov AS (1997) Rapid decline of fitness in panmictic populations of Drosophila melanogaster maintained under relaxed natural selection. Proc Natl Acad Sci USA 94(24):13034–13039CrossRefPubMedPubMedCentralGoogle Scholar
  74. Silver R, Andrews H, Ball GF (1985) Parental care in an ecological perspective: a quantitative analysis of avian subfamilies. Am Zool 25(3):823–840CrossRefGoogle Scholar
  75. Smiseth P (2014) Parental Care. In: Shuker D, Simmons L (eds) The evolution of insect mating systems. Oxford University Press, Oxford, pp 221–241CrossRefGoogle Scholar
  76. Smiseth PT, Moore AJ (2007) Signalling of hunger by senior and junior larvae in asynchronous broods of a burying beetle. Anim Behav 74:699–705. doi: 10.1016/j.anbehav.2006.09.022 CrossRefGoogle Scholar
  77. Smiseth PT, Moore AJ (2008) Parental distribution of resources in relation to larval hunger and size rank in the burying beetle Nicrophorus vespilloides. Ethology 114(8):789–796. doi: 10.1111/j.1439-0310.2008.01516.x CrossRefGoogle Scholar
  78. Snell-Rood E, JD Van Dyken, Cruickshank T, Wade M, Moczek A (2010) Toward a population genetic framework of developmental evolution: costs, limits, and consequences of phenotypic plasticity. BioEssays, 32, 71–81CrossRefPubMedPubMedCentralGoogle Scholar
  79. Snell-Rood E, Moczek A (2013) Horns and the role of development in the evolution of beetle contests. In: Hardy I, Briffa M (eds) Animal contests. Cambridge University Press, Cambridge, pp 178–198CrossRefGoogle Scholar
  80. Standen EM, Du TY, Larsson HCE (2014) Developmental plasticity and the origin of tetrapods. Nature 513(7516):54. doi: 10.1038/nature13708 CrossRefPubMedGoogle Scholar
  81. Szafraniec K, Borts RH, Korona R (2001) Environmental stress and mutational load in diploid strains of the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci USA 98(3):1107–1112CrossRefPubMedPubMedCentralGoogle Scholar
  82. Thompson JN, Pellmyr O (1991) Evolution of oviposition behavior and host preference in Lepidoptera. Annu Rev Entomol 36:65–89CrossRefGoogle Scholar
  83. Trumbo S (2012) Patterns of parental care in invertebrates. In: Royle N, Smiseth P, Kolliker M (eds) The evolution of parental care. Oxford University Press, Oxford, pp 81–100CrossRefGoogle Scholar
  84. Tuncbilek AS, Kansu IA (1996) The influence of rearing medium on the irradiation sensitivity of eggs and larvae of the flour beetle, Tribolium confusum J. du Val. J Stored Prod Res 32(1):1–6. doi: 10.1016/0022-474x(95)00039-a CrossRefGoogle Scholar
  85. Van Dyken JD, Wade MJ (2010) The genetic signature of conditional expression. [Research Support, N.I.H., Extramural; Research Support, Non-U.S. Gov’t]. Genetics 184(2):557–570CrossRefPubMedPubMedCentralGoogle Scholar
  86. Vassilieva LL, Hook AM, Lynch M (2000) The fitness effects of spontaneous mutations in Caenorhabditis elegans. Evolution 54(4):1234–1246CrossRefPubMedGoogle Scholar
  87. Wade MJ (1998) The evolutionary genetics of maternal effects. In: Mousseau TA, Fox CW (eds) Maternal effects as adaptations. Oxford University Press, New York, pp 5–21Google Scholar
  88. Wheeler D (1996) The role of nourishment in oogenesis. Annu Rev Entomol 41:407–431. doi: 10.1146/annurev.ento.41.1.407 CrossRefPubMedGoogle Scholar
  89. Whitlock MC (1996) The red queen beats the jack-of-all-trades: the limitations on the evolution of phenotypic plasticity and niche breadth. Am Nat 148:S65–S77CrossRefGoogle Scholar
  90. Williams GC, Nesse RM (1991) The dawn of Darwinian medicine. Q Rev Biol 66(1):1–22CrossRefPubMedGoogle Scholar
  91. Wong JWY, Meunier J, Kolliker M (2013) The evolution of parental care in insects: the roles of ecology, life history and the social environment. Ecol Entomol 38(2):123–137. doi: 10.1111/een.12000 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Emilie C. Snell-Rood
    • 1
    • 2
    Email author
  • Melissa Burger
    • 2
    • 3
  • Quinton Hutton
    • 2
  • Armin P. Moczek
    • 2
  1. 1.Department Ecology, Evolution and BehaviorUniversity of MinnesotaSt PaulUSA
  2. 2.Department BiologyIndiana UniversityBloomingtonUSA
  3. 3.Department of Natural Resources ScienceUniversity of Rhode IslandKingstonUSA

Personalised recommendations