Abstract
Asymmetric dispersal within and between populations is more often the norm than the exception. For example, prevailing winds and currents can result in directional dispersal of many passively dispersed species and inter-individual variability in physical condition can generate asymmetric dispersal rates between individuals and populations. Despite this, very little theory incorporates asymmetric dispersal into spatial ecological or genetic models. We therefore present three illustrative scenarios incorporating asymmetric dispersal into spatially and genetically explicit individual based models. In the first, asymmetric dispersal due to environmental forces, such as wind or currents, interacts with the accumulation of mutation load across an environmental gradient, with consequences for range dynamics. In the second, asymmetric dispersal rates arise as individuals disperse according to their physical condition, such that individuals carrying more mutation load disperse less. We demonstrate that this condition-dependent asymmetric dispersal substantially reduces metapopulation persistence. Finally, we turn to the potential implications of condition-dependent dispersal for range expansions. Simulations demonstrate that asymmetric dispersal of individuals according to their load status can substantially slow the rate of range expansion. Taken together, these results highlight that overlooking asymmetric dispersal can result in major biases of our estimates of species persistence and range expansion dynamics.
Similar content being viewed by others
References
Alleaume-Benharira M, Pen IR, Ronce O (2006) Geographical patterns of adaptation within a species’ range: interactions between drift and gene flow. J Evol Biol 19:203–215. doi:10.1111/j.1420-9101.2005.00976.x
Barbraud C, Johnson AR, Bertault G (2003) Phenotypic correlates of post-fledging dispersal in a population of greater flamingos: the importance of body condition. J Anim Ecol 72:246–257. doi:10.1046/j.1365-2656.2003.00695.x
Bonte D (2009) Inbreeding depresses short and long distance dispersal in three congeneric spiders. J Evol Biol 22:1429–1434. doi:10.1111/j.1420-9101.2009.01756.x
Bonte D, De La Peña E (2009) Evolution of body condition-dependent dispersal in metapopulations. J Evol Biol 22:1242–1251. doi:10.1111/j.1420-9101.2009.01737.x
Bridle JR, Polechova J, Kawata M, Butlin RK (2010) Why is adaptation prevented at ecological margins? New insights from individual-based simulations. Ecol Lett 13:485–494. doi:10.1111/j.1461-0248.2010.01442.x
Burton OJ, Phillips BL, Travis JMJ (2010) Trade-offs and the evolution of life-histories during range expansion. Ecol Lett 13:1210–1220. doi:10.1111/j.1461-0248.2010.01505.x
Calsbeek R, Smith TB (2003) Ocean currents mediate evolution in island lizards. Nature 426:552–555. doi:10.1038/nature02143
Cwynar LC, MacDonald GM (1987) Geographical variation of Lodgepole pine in relation to population history. Am Nat 129:463–469. doi:10.1038/439803a
Edelaar P, Bolnick DI (2012) Non-random gene flow: an underappreciated force in evolution and ecology. Trends Ecol Evol 27:659–665. doi:10.1016/j.tree.2012.07.009
Edelaar P, Siepielski AM, Clobert J (2008) Matching habitat choice causes directed gene flow: a neglected dimension in evolution and ecology. Evolution 62:2462–2472. doi:10.1111/j.1558-5646.2008.00459.x
Glémin S (2003) How are deleterious mutations purged? drift versus nonrandom mating. Evolution (N Y) 57:2678–2687. doi:10.1111/j.0014-3820.2003.tb01512.x
Guillaume F, Perrin N (2006) Joint evolution of dispersal and inbreeding load. Genetics 173:497–509. doi:10.1534/genetics.105.046847
Haag CR, Saastamoinen M, Marden JH, Hanski I (2005) A candidate locus for variation in dispersal rate in a butterfly metapopulation. Proc R Soc B 272:2449–2456. doi:10.1098/rspb.2005.3235
Henry RC, Bocedi G, Travis JMJ (2013) Eco-evolutionary dynamics of range shifts: elastic margins and critical thresholds. J Theor Biol 321:1–7. doi:10.1016/j.jtbi.2012.12.004
Henry R, Bartoń K, Travis J (2015) Mutation accumulation and the formation of range limits. Biol Lett. doi:10.1098/rsbl.2014.0871
Higgins K, Lynch M (2001) Metapopulation extinction caused by mutation accumulation. Proc Natl Acad Sci 98:2928–2933. doi:10.1073/pnas.031358898
Hill JK, Thomas CD, Blakeley DS (1999) Evolution of flight morphology in a butterfly that has recently expanded its geographic range. Oecologia 121:165–170. doi:10.2307/4222454
Hockey PAR, Leseberg A, Loewenthal D (2003) Dispersal and migration of juvenile African Black Oystercatchers Haematopus moquini. Ibis (Lond 1859) 145:E114–E123. doi:10.1046/j.1474-919X.2003.00174.x
Jaquiéry J, Guillaume F, Perrin N (2009) Predicting the deleterious effects of mutation load in fragmented populations. Conserv Biol 23:207–218. doi:10.1111/j.1523-1739.2008.01052.x
Kawecki TJ, Holt RD (2002) Evolutionary consequences of asymmetric dispersal rates. Am Nat 160:333–347. doi:10.1086/341519
Kirkpatrick M, Barton NH (1997) Evolution of a species’ range. Am Nat 150:1–23. doi:10.1086/286054
Kruuk LEB, Sheldon BC, Merilä J (2002) Severe inbreeding depression in collared flycatchers (Ficedula albicollis). Proc R Soc Lond Ser B Biol Sci 269:1581–1589. doi:10.1098/rspb.2002.2049
Kubisch A, Hovestadt T, Poethke H-J (2010) On the elasticity of range limits during periods of expansion. Ecology 91:3094–3099. doi:10.1890/09-2022.1
Mix C, Picó FX, van Groenendael JM, Joop Ouborg N (2006) Inbreeding and soil conditions affect dispersal and components of performance of two plant species in fragmented landscapes. Basic Appl Ecol 7:59–69. doi:10.1016/j.baae.2005.04.007
Morrissey MB, de Kerckhove DT (2009) The maintenance of genetic variation due to asymmetric gene flow in dendritic metapopulations. Am Nat 174:875–889. doi:10.1086/648311
Peischl S, Dupanloup I, Kirkpatrick M, Excoffier L (2013) On the accumulation of deleterious mutations during range expansions. Mol Ecol 22:5972–5982. doi:10.1111/mec.12524
Peischl S, Kirkpatrick M, Excoffier L (2015) Expansion load and the evolutionary dynamics of a species range. Am Nat 185:E81–E93. doi:10.1086/680220
Phillips BL, Brown GP, Webb JK, Shine R (2006) Invasion and the evolution of speed in toads. Nature 439:803. doi:10.1038/439803a
Phillips BL, Brown GP, Travis JMJ, Shine R (2008) Reid’s paradox revisited: the evolution of dispersal kernels during range expansion 172:S34–S48. doi:10.1086/588255
Phillips BL, Brown GP, Shine R (2010a) Life-history evolution in range-shifting populations. Ecology 91:1617–1627. doi:10.1890/09-0910.1
Phillips BL, Brown GP, Shine R (2010b) Evolutionarily accelerated invasions: the rate of dispersal evolves upwards during the range advance of cane toads. J Evol Biol 23:2595–2601. doi:10.1111/j.1420-9101.2010.02118.x
Picó FX, Joop Ouborg N, van Groenendael JM (2004) Influence of selfing and maternal effects on life-cycle traits and dispersal ability in the herb Hypochaeris radicata (Asteraceae). Bot J Linn Soc 146:163–170. doi:10.1111/j.1095-8339.2004.00330.x
Postma E, van Noordwijk AJ (2005) Gene flow maintains a large genetic difference in clutch size at a small spatial scale. Nature 433:65–68. doi:10.1038/nature03083
Price TD, Kirkpatrick M (2009) Evolutionarily stable range limits set by interspecific competition. Proc R Soc B 276:1429–1434. doi:10.1098/rspb.2008.1199
Roze D, Rousset F (2005) Inbreeding depression and the evolution of dispersal rates: a multilocus model. Am Nat 166:708–721. doi:10.1086/497543
Roze D, Rousset F (2009) Strong effects of heterosis on the evolution of dispersal rates. J Evol Biol 22:1221–1233. doi:10.1111/j.1420-9101.2009.01735.x
Sarneel JM, Beltman B, Buijze A et al (2014) The role of wind in the dispersal of floating seeds in slow-flowing or stagnant water bodies. J Veg Sci 25:262–274. doi:10.1111/jvs.12074
Shine R, Brown G, Phillips B (2011) An evolutionary process that assembles phenotypes through space rather than through time. PNAS 108:8–11. doi:10.1073/pnas.1018989108
Simmons AD, Thomas CD (2004) Changes in dispersal during species’ range expansions. Am Nat 164:378–395. doi:10.1086/423430
Szulkin M, Garant D, McCleery RH, Sheldon BC (2007) Inbreeding depression along a life-history continuum in the great tit. J Evol Biol 20:1531–1543. doi:10.1111/j.1420-9101.2007.01325.x
Travis JMJ, Dytham C (2002) Dispersal evolution during invasions. Evol Ecol Res 4:1119–1129
Vanschoenwinkel B, Gielen S, Seaman M, Brendonck L (2008) Any way the wind blows—frequent wind dispersal drives species sorting in ephemeral aquatic communities. Oikos 117:125–134. doi:10.1111/j.2007.0030-1299.16349.x
Vuilleumier S, Possingham HP (2006) Does colonization asymmetry matter in metapopulations? Proc R Soc B Biol Sci 273:1637–1642. doi:10.1098/rspb.2006.3469
Wheat CW, Fescemyer HW, Kvist J et al (2011) Functional genomics of life history variation in a butterfly metapopulation. Mol Ecol 20:1813–1828. doi:10.1111/j.1365-294X.2011.05062.x
Whitlock M (2002) Selection, load and inbreeding depression in a large metapopulation. Genetics 160:1191–1202
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Henry, R.C., Coulon, A. & Travis, J.M.J. Dispersal asymmetries and deleterious mutations influence metapopulation persistence and range dynamics. Evol Ecol 29, 833–850 (2015). https://doi.org/10.1007/s10682-015-9777-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10682-015-9777-4