Evolutionary Ecology

, Volume 29, Issue 3, pp 311–322

Are flowers red in teeth and claw? Exploitation barriers and the antagonist nature of mutualisms

Original Paper

Abstract

The romantic perception of plant–animal mutualisms as a cooperative endeavour has been shattered in the last decades. While the classic theory of plant–pollinator coevolution assumed that partner coevolution is largely mutualistic, an increasing appreciation of the inherent conflict of interests between such partners has led to the realization that genes that confer a reproductive advantage to plants may have negative effects on their pollinators (and vice versa), giving rise to an apparent paradox: that antagonistic processes may drive coevolution among mutualistic partners. Under this new paradigm, mutualistic partners are bound by mutual interest but shaped by “selfish” antagonistic processes. Exploitation barriers mediated by resource competition among pollinators are a key element of this paradigm. Exploitation barriers involve traits such as tubular corollas, red flowers, toxic or deterrent rewards, and attractants of floral predators. Exploitation barriers result in resource partitioning, increasing floral fidelity of favoured pollinators and therefore plant fitness; but they often entail a physiological, behavioural or developmental cost for such favoured pollinators. Resource partitioning mediated by exploitation barriers is a very powerful driver of floral diversification, robust to variation in pollinator assemblages; hence, it may contribute to elucidating the occurrence of co-evolutionary changes in multi-species contexts. Exploitation barriers provide also a mechanistic basis for trait-based modelling of interaction networks, and represent a reason for caution in assuming fixed interaction identity or strength when modelling such networks (e.g. in rarefaction procedures used to estimate secondary extinctions). We propose to replace the misleading metaphor that depicts flowers and pollinators as cooperative partners by a metaphor in which plants and pollinator are traders, seeking to obtain different services from each other in complete disregard for the benefit of their mutualistic partner.

Keywords

Exploitation barriers Plant–pollinator interaction Optimal foraging Resource partitioning Competition Mutualism Antagonism 

References

  1. Ackerman JD (1986) Mechanisms and evolution of food-deceptive pollination systems in orchids. Lindleyana 1:108–113Google Scholar
  2. Adler LS (2000) The ecological significance of toxic nectar. Oikos 91:409–420CrossRefGoogle Scholar
  3. Adler LS, Irwin RE (2005) Ecological costs and benefits of defenses in nectar. Ecology 86:2968–2978CrossRefGoogle Scholar
  4. Aigner PA (2001) Optimality modelling and fitness trade-offs: when should plants become pollinator specialists? Oikos 95:177–184CrossRefGoogle Scholar
  5. Bascompte J, Jordano P (2007) Plant–animal mutualistic networks: the architecture of biodiversity. Ann Rev Ecol Evol Syst 38:567–593Google Scholar
  6. Bascompte J, Jordano P, Olesen JM (2006) Asymmetric coevolutionary networks facilitate biodiversity maintenance. Science 312:431–433CrossRefPubMedGoogle Scholar
  7. Beardsley PM, Yen A, Olmstead RG (2003) AFLP phylogeny of Mimulus section Erythranthe and the evolution of hummingbird pollination. Evolution 57:1397–1410CrossRefPubMedGoogle Scholar
  8. Bradshaw HD, Schemske DW (2003) Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. Nature 426:176–178CrossRefPubMedGoogle Scholar
  9. Burquez A (1989) Blue tits, Parus caeruleus, as pollinators of the crown imperial, Fritillaria imperialis in Britain. Oikos 55:335–340CrossRefGoogle Scholar
  10. Campbell C, Yang S, Albert R, Shea K (2011) A network model for plant–pollinator community assembly. PNAS 108:197–202CrossRefPubMedCentralPubMedGoogle Scholar
  11. Castellanos MC, Wilson P, Thomson JD (2004) ‘Anti-bee’ and ‘pro-bird’ changes during the evolution of hummingbird pollination in Penstemon flowers. J Evol Biol 17:876–885CrossRefPubMedGoogle Scholar
  12. Chittka L, Waser NM (1997) Why red flowers are not invisible to bees. Israel J Plant Sci 45:169–183CrossRefGoogle Scholar
  13. Clark JL, Clavijo L, Muchhala N (2014) Convergence of anti-bee pollination mechanisms in the Neotropical plant genus Drymonia (Gesneriaceae). Evol Ecol. doi:10.1007/s10682-014-9729-4
  14. Dafni A, Bernhardt P, Shmida A, Ivri Y, Greenbaum S, O’Toole C, Losito L (1990) Red bowl-shaped flowers: convergence for beetle pollination in the Mediterranean region. Israel J Bot 39:81–92Google Scholar
  15. Dawkins R (1976) The selfish gene. Oxford University Press, OxfordGoogle Scholar
  16. Feinsinger P, Wolfe JA, Swarm LA (1982) Island ecology: reduced hummingbird diversity and the pollination biology of plants, Trinidad and Tobago, West Indies. Ecology 63:494–506CrossRefGoogle Scholar
  17. Fenster CB, Armbruster WS, Wilson P, Dudash MR, Thomson JD (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst 35:375–403CrossRefGoogle Scholar
  18. Geerts S, Pauw A (2009) Hyper-specialization for long-billed bird pollination in a guild of South African plants: the Malachite Sunbird pollination syndrome. S Afr J Bot 75:699–706CrossRefGoogle Scholar
  19. Gegear RJ, Manson JS, Thomson JD (2007) Ecological context influences pollinator deterrence by alkaloids in floral nectar. Ecol Lett 10:375–382CrossRefPubMedGoogle Scholar
  20. Ghazoul J (2001) Can floral repellents pre-empt potential ant–plant conflicts? Ecol Lett 4:295–299CrossRefGoogle Scholar
  21. Gonzálvez FG, Santamaría L, Corlett RT, Rodríguez-Gironés MA (2013) Flowers attract weaver ants that deter less effective pollinators. J Ecol 101:78–85CrossRefGoogle Scholar
  22. Gonzálvez FG, Chen J, Rodríguez-Gironés MA (2014) The function of ant repellence by flowers: testing the “nectar protection” and “pollinator protection” hypotheses. Evol Ecol. doi:10.1007/s10682-014-9742-7
  23. Guimaraes PR Jr, Jordano P, Thompson JN (2011) Evolution and coevolution in mutualistic networks. Ecol Lett 14:877–885CrossRefPubMedGoogle Scholar
  24. Heinberg R (2012) Our Cooperative Darwinian Moment. 17/8/2012 entry at Our World, by United Nations University. Available at: http://ourworld.unu.edu/en/our-cooperative-darwinian-moment
  25. Inouye DW (1980) The terminology of floral larceny. Ecology 61:1251–1253Google Scholar
  26. Johnson SD, Steiner KE (2000) Generalization versus specialization in plant pollination systems. TREE 15:140–143PubMedGoogle Scholar
  27. Johnson SD, Hargreaves AL, Brown M (2006) Dark bitter-tasting nectar functions as a filter of flower visitors in a bird-pollinated plant. Ecology 87:2709–2716CrossRefPubMedGoogle Scholar
  28. Junker R, Chung AY, Blüthgen N (2007) Interaction between flowers, ants and pollinators: additional evidence for floral repellence against ants. Ecol Res 22:665–670CrossRefGoogle Scholar
  29. Junker RR, Blüthgen N, Keller A (2014) Functional and phylogenetic diversity of plant communities differently affect the structure of flower-visitor interactions and reveal convergences in floral traits. Evol Ecol. doi:10.1007/s10682-014-9747-2
  30. Kaiser-Bunbury CN, Muff S, Memmott J, Müller CB, Caflisch A (2010) The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol Lett 13:442–452CrossRefPubMedGoogle Scholar
  31. Kato TIM (1992) Inter-and intraspecific morphological variation in bumblebee species, and competition in flower utilization. In: Hunter MD, Ohgushi T, Price PW (eds) Effects of resource distribution on animal plant interactions, Chapter 13. Academic Press Inc, San Diego, pp 393–427Google Scholar
  32. Kessler D, Baldwin IT (2007) Making sense of nectar scents: the effects of nectar secondary metabolites on floral visitors of Nicotiana attenuata. Plant J 49:840–854CrossRefPubMedGoogle Scholar
  33. Lázaro A, Vignolo C, Santamaría L (2014) Long corollas as nectar barriers in Lonicera implexa: interactions between corolla tube length and nectar volume. Evol Ecol. doi:10.1007/s10682-014-9736-5
  34. Lewis D (1943) The physiology of incompatibility in plants II. Linum grandiflorum. Ann Bot 7:115–122Google Scholar
  35. Lunau K, Papiorek S, Eltz T, Sazima M (2011) Avoidance of achromatic colours by bees provides a private niche for hummingbirds. J Exp Biol 214:1607–1612CrossRefPubMedGoogle Scholar
  36. Memmott J, Waser NM, Price MV (2004) Tolerance of pollination networks to species extinctions. Proc Royal Soc London B: Biol Sci 271:2605–2611CrossRefGoogle Scholar
  37. Nicolson SW, Lerch-Henning S, Welsford M, Johnson SD (2014) Nectar palatability can selectively filter bird and insect visitors to coral tree flowers. Evol Ecol. doi:10.1007/s10682-014-9718-7
  38. Noë R, Hammerstein P (1995) Biological markets. TREE 10:336–339PubMedGoogle Scholar
  39. Okuyama T, Holland JN (2008) Network structural properties mediate the stability of mutualistic communities. Ecol Lett 11:208–216CrossRefPubMedGoogle Scholar
  40. Olesen JM, Bascompte J, Dupont YL, Jordano P (2007) The modularity of pollination networks. Proc Natl Acad Sci 104:19891–19896CrossRefPubMedCentralPubMedGoogle Scholar
  41. Pocock MJ, Evans DM, Memmott J (2012) The robustness and restoration of a network of ecological networks. Science 335:973–977CrossRefPubMedGoogle Scholar
  42. Possingham HP (1992) Habitat selection by two species of nectarivore: habitat quality isolines. Ecology 73:1903–1912CrossRefGoogle Scholar
  43. Praz CJ, Müller A, Dorn S (2008) Specialized bees fail to develop on non-host pollen: do plants chemically protect their pollen. Ecology 89:795–804CrossRefPubMedGoogle Scholar
  44. Rezende EL, Lavabre JE, Guimarães PR, Jordano P, Bascompte J (2007) Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448:925–928CrossRefPubMedGoogle Scholar
  45. Rodríguez-Gironés MA (2006) Resource partitioning among flower visitors: extensions of Possingham’s model. Evol Ecol Res 8:765–783Google Scholar
  46. Rodríguez-Gironés MA, Santamaría L (2004) Why are so many bird flowers red? PLoS Biol 2:e350CrossRefPubMedCentralPubMedGoogle Scholar
  47. Rodríguez-Gironés MA, Santamaría L (2005) Resource partitioning among flower visitors and evolution of nectar concealment in multi-species communities. Proc R Soc London B 272:187–192CrossRefGoogle Scholar
  48. Rodríguez-Gironés MA, Santamaría L (2006) Models of optimal foraging and resource partitioning: deep corollas for long tongues. Behav Ecol 17:905–910CrossRefGoogle Scholar
  49. Rodríguez-Gironés MA, Santamaría L (2007) Resource competition, character displacement and evolution of deep corolla tubes. Am Nat 170:455–464CrossRefPubMedGoogle Scholar
  50. Rodríguez-Gironés MA, Santamaría L (2010) How foraging behaviour and resource partitioning can drive the evolution of flowers and the structure of pollination networks. Open Ecol J 3:1–11CrossRefGoogle Scholar
  51. Rodríguez-Gironés MA, Gonzálvez FG, Llandres AL, Corlett RT, Santamaría L (2013) Possible role of weaver ants, Oecophylla smaragdina, in shaping plant–pollinator interactions in South-East Asia. J Ecol 101:1000–1006CrossRefGoogle Scholar
  52. Rodríguez-Gironés MA, Sun S, Santamaría L (2014) Passive partner choice through exploitation barriers. Evol Ecol. doi:10.1007/s10682-014-9738-3
  53. Santamaría L, Rodríguez-Gironés MA (2007) Linkage rules for plant–pollinator networks: trait complementarity or exploitation barriers? PLoS Biol 5:e31CrossRefPubMedCentralPubMedGoogle Scholar
  54. Schiestl FP (2005) On the success of a swindle: pollination by deception in orchids. Naturwissenschaften 92:255–264CrossRefPubMedGoogle Scholar
  55. Schlindwein C, Wittmann D, Martins CF, Hamm A, Siqueira JA, SchifflerD Machado IC (2005) Pollination of Campanula rapunculus L. (Campanulaceae): how much pollen flows into pollination and into reproduction of oligolectic pollinators. Plant Syst Evol 250:147–156CrossRefGoogle Scholar
  56. Spaethe J, Tautz J, Chittka L (2001) Visual constraints in foraging bumblebees: flower size and color affect search time and flight behavior. Proc Natl Acad Sci 98:3898–3903CrossRefPubMedCentralPubMedGoogle Scholar
  57. Stebbins GL (1970) Adaptive radiation of reproductive characteristics in angiosperms, I: pollination mechanisms. Ann Rev Ecol Syst 1:307–326CrossRefGoogle Scholar
  58. Tafarella S (2008) Evolution v. creation metaphor watch: is nature “red in tooth and claw”? 19/8/2008 entry in: Prometheus Unbound. Available at: https://santitafarella.wordpress.com/2008/08/19/evolution-v-creation-metaphor-watch-is-nature-red-in-tooth-and-claw/
  59. Tan K, Guo YH, Nicolson SW, Radloff SE, Song QS, Hepburn HR (2007) Honeybee (Apis cerana) foraging responses to the toxic honey of Tripterygium hypoglaucum (Celastraceae): changing threshold of nectar acceptability. J Chem Ecol 33:2209–2217CrossRefPubMedGoogle Scholar
  60. Tennyson A (1833) In Memoriam A.H.H. Available at: http://www.online-literature.com/tennyson/718/
  61. Thakar JD, Kunte K, Chauhan AK, Watve AV, Watve MG (2003) Nectarless flowers: ecological correlates and evolutionary stability. Oecologia 136:565–570CrossRefPubMedGoogle Scholar
  62. Thomson JD, Wilson P (2008) Explaining evolutionary shifts between bee and hummingbird pollination: convergence, divergence, and directionality. Int J Plant Sci 169:23–38CrossRefGoogle Scholar
  63. Thomson JD, Wilson P, Valenzuela M, Malzone M (2000) Pollen presentation and pollination syndromes, with special reference to Penstemon. Plant Spec Biol 15:11–29CrossRefGoogle Scholar
  64. Valido A, Dupont YL, Olesen JM (2004) Bird–flower interactions in the Macaroni islands. J Biogeogr 31:1945–1953CrossRefGoogle Scholar
  65. Veiga T, Guitián J, Guitián P, Guitián J, Sobral M (2014) Are pollinators and seed predators selective agents on flower color in Gentiana lutea? Evol Ecol. doi:10.1007/s10682-014-9751-6
  66. Westerkamp C (1993) The co-operation between the asymmetric flower of Lathyrus latifolius (Fabaceae-Vicieae) and its visitors. Phyton 33:121–137Google Scholar
  67. Westerkamp C (1996) Flowers and bees are competitors-not partners: towards a new understanding of complexity in specialised bee flowers. Acta Hortic 437:71–74Google Scholar
  68. Yamasaki E, Kawakita A, Sakai S (2014) Diversity and evolution of pollinator rewards and protection by Macaranga (Euphorbiaceae) bracteoles. Evol Ecol. doi:10.1007/s10682-014-9750-7
  69. Zimmerman M, Pleasants JM (1982) Competition among pollinators: quantification of available resources. Oikos 38:381–383CrossRefGoogle Scholar
  70. Zung JL, Forrest JRK, Castellanos MC, Thomson JD (2014) Bee- to bird-pollination shifts in Penstemon: effects of floral-lip removal and corolla constriction on the preferences of free-foraging bumble bees. Evol Ecol. doi:10.1007/s10682-014-9716-9

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Estación Biológica de Doñana, EBD-CSICIsla de la CartujaSpain
  2. 2.Estación Experimental de Zonas Áridas, EEZA-CSICLa Cañada de San UrbanoSpain

Personalised recommendations