Evolutionary Ecology

, Volume 29, Issue 3, pp 451–464

Are pollinators and seed predators selective agents on flower color in Gentiana lutea?

  • Tania Veiga
  • Javier Guitián
  • Pablo Guitián
  • José Guitián
  • Mar Sobral
Original Paper

Abstract

Animals which interact with plants often cause selective pressures on plant traits. Flower color variation within a species might be shaped by the action of animals feeding on the plant species. Pollinators might exert natural selection on color if flower color is related to their foraging efficiency. For example, some pollinator species might require more time to detect particular colors. If that is the case, flower color might have evolved as a pollination exploitation barrier—ensuring that flowers are more visited by the most efficient pollinators. In addition, non-pollinator agents such as predispersal seed predators may select on flower color, if color indicates food resources (seeds) or if color is related to deterrent compounds. We address selection on flower color in a population of Gentiana lutea where color varies among individuals from yellow to orange. We hypothesize that opposed selection from mutualists (pollinators) and antagonists (predispersal seed predators) maintains flower color variation in this population. By means of path analysis we addressed the role of both interactors in flower color selection. We found that selection acts on flower color, mediated by both pollinators and seed predators. Both agents favored yellow-flowered individuals, thus selection by pollinators and seed predators does not maintain flower color variation in this population.

Keywords

Gentiana lutea Flower color polymorphism Phenotypic selection Pollinators Predispersal seed predators SEM 

References

  1. Arista M, Talavera M, Berjano R, Ortiz PL (2013) Abiotic factors may explain the geographical distribution of flower colour morphs and the maintenance of colour polymorphism in the scarlet pimpernel. J Ecol 101:1613–1622CrossRefGoogle Scholar
  2. Armbruster W (2002) Can indirect selection and genetic context contribute to trait diversification? a transition probability study of blossom colour evolution in two genera. J Evol Biol 15:468–486Google Scholar
  3. Bradshaw H, Schemske DW (2003) Allele substitution at a flower colour locus produces a pollinator shift in monkeyflowers. Nature 426:176–178CrossRefPubMedGoogle Scholar
  4. Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Annu Rev Entomol 46:471–510CrossRefPubMedGoogle Scholar
  5. Campbell DR (2009) Using phenotypic manipulations to study multivariate selection of floral trait associations. Ann Bot 103:1557–1566CrossRefPubMedCentralPubMedGoogle Scholar
  6. Carlson JE, Holsinger KE (2013) Direct and indirect selection on floral pigmentation by pollinators and seed predators in a color polymorphic South African shrub. Oecologia 171:905–919CrossRefPubMedGoogle Scholar
  7. Caruso CM, Scott SL, Wray JC, Walsh CA (2010) Pollinators, herbivores, and the maintenance of flower color variation: a case study with Lobelia siphilitica. Int J Plant Sci 171(9):1020–1028CrossRefGoogle Scholar
  8. Chittka L, Waser NM (1997) Why red flowers are not invisible to bees. Isr J Plant Sci 45:169–183CrossRefGoogle Scholar
  9. CIE (2004) 15: 2004 Colorymetry. CIE Central Bureau, ViennaGoogle Scholar
  10. Eckhart VM (1992) Spatio-temporal variation in abundance and variation in foraging behaviour of the pollinators of gynodioecious Phacelia linearis (Hydrophyllaceae). Oikos 64:573–586CrossRefGoogle Scholar
  11. Fenster CB, Armbruster WS, Wilson P, Dudash MR, James D (2004) Pollination syndromes and floral specialization. Annu Rev Ecol Evol Syst 35:375–403CrossRefGoogle Scholar
  12. Fineblum WL, Rausher MD (1997) Do floral pigmentation genes also influence resistance to enemies? The W locus in Ipomoea purpurea. Ecology 78(6):1646–1654CrossRefGoogle Scholar
  13. Frey FM (2004) Opposing natural selection from herbivores and pathogens may maintain floral-color variation in Claytonia virginica (Portulacaceae). Evolution 58(11):2426–2437CrossRefPubMedGoogle Scholar
  14. Gómez J (2000) Phenotypic selection and response to selection in Lobularia maritima: importance of direct and correlational components of natural selection. J Evol Biol 13:689–699CrossRefGoogle Scholar
  15. Grace JB (2006) Structural equation modeling and natural systems. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  16. Green B, Durnford D (1996) The chlorophyll-carotenoid proteins of oxygenic photosynthesis. Annu Rev Plant Biol 47:685–714CrossRefGoogle Scholar
  17. Irwin RE, Strauss SY, Storz S, Emerson A, Guibert G (2003) The role of herbivores in the maintenance of a flower color polymorphism in wild radish. Ecology 84:1733–1743CrossRefGoogle Scholar
  18. Jones KM, Reithel JS (2001) Pollinator-mediated selection on a flower color polymorphism in experimental populations of Antirrhinum (Scrophulariaceae). Am J Bot 88:447–454CrossRefGoogle Scholar
  19. Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7(12):1225–1241CrossRefGoogle Scholar
  20. Kingsolver JG, Hoekstra HE, Hoekstra JM, Berrigan D, Vignieri SN, Hill CE, Hoang A, Gibert P, Beerli P (2001) The strength of phenotypic selection in natural populations. Am Nat 157(3):245–261CrossRefPubMedGoogle Scholar
  21. Kohlein F (1991) Gentians. Timber Press Inc, PortlandGoogle Scholar
  22. Kolb A, Ehrlén J, Eriksson O (2007) Ecological and evolutionary consequences of spatial and temporal variation in pre-dispersal seed predation. Perspect Plant Ecol Evol Syst 9(2):79–100CrossRefGoogle Scholar
  23. Kugler H (1943) Hummeln als Blütenbesucher. Ergebnisse der Biologie 19:323Google Scholar
  24. Kunze J, Gumbert A (2001) The combined effect of color and odor on flower choice behavior of bumblebees in flower mimicry systems. Behav Ecol 12(4):447–456CrossRefGoogle Scholar
  25. Lande R, Arnold SJ (1983) The measurement of selection on correlated characters. Evolution 37:1210–1226CrossRefGoogle Scholar
  26. Lev-Yadun S, Gould KS (2009) Role of anthocyanins in plant defence. In: Gould K, Davies K, Winefield C (eds) Anthocyanins: biosynthesis, functions, and applications. Springer, New York, pp 21–48Google Scholar
  27. Moehs CP, Tian L, Osteryoung KW, DellaPenna D (2001) Analysis of carotenoid biosynthetic gene expression during marigold petal development. Plant Mol Biol 45:281–293CrossRefPubMedGoogle Scholar
  28. Ninyerola M, Roure JM, Fernández XP (2005) Atlas climático digital de la Península Ibérica: metodología y aplicaciones en bioclimatología y geobotánica. Universidad Autónoma de Barcelona, BellaterraGoogle Scholar
  29. Peitsch D, Fietz A, Hertel H, de Souza J, Ventura DF, Menzel R (1992) The spectral input systems of hymenopteran insects and their receptor-based colour vision. J Comp Physiol A 170:23–40CrossRefPubMedGoogle Scholar
  30. Ploquin EF, Herrera JM, Obeso JR (2013) Bumblebee community homogenization after uphill shifts in montane areas of northern Spain. Oecologia 173:1649–1660CrossRefPubMedGoogle Scholar
  31. Price MV, Waser NM, Irwin RE, Campbell DR, Brody AK (2005) Temporal and spatial variation in pollination of a montane herb: a seven-year study. Ecology 86(8):2106–2116CrossRefGoogle Scholar
  32. Rausher MD (2008) Evolutionary transitions in floral color. Int J Plant Sci 169(1):7–21CrossRefGoogle Scholar
  33. Rodríguez-Gironés MA, Santamaría L (2004) Why are so many bird flowers red? PLoS Biol 2:e350CrossRefPubMedCentralPubMedGoogle Scholar
  34. Rodríguez-Gironés MA, Santamaría L (2005) Resource partitioning among flower visitors and evolution of nectar concealment in multi-species communities. Proc Biol Sci 272:187–192CrossRefPubMedCentralPubMedGoogle Scholar
  35. Rossi M (2011) Taxonomy, phylogeny and reproductive ecology of Gentiana lutea L. Dissertation. Universitá degli studi di Bologna, BolognaGoogle Scholar
  36. Schemske DW, Bierzychudek P (2007) Spatial differentiation for flower color in the desert annual Linanthus parryae: was Wright right? Evolution 61:2528–2543CrossRefPubMedGoogle Scholar
  37. Spaethe J, Tautz J, Chittka L (2001) Visual constraints in foraging bumblebees: flower size and color affect search time and flight behavior. Proc Natl Acad Sci USA 98:3898–3903CrossRefPubMedCentralPubMedGoogle Scholar
  38. StatSoft Inc. (2001) STATISTICA (data analysis software system), version 6. StatSoft Inc., TulsaGoogle Scholar
  39. Strauss SY, Irwin RE (2004) Ecological and evolutionary consequences of multispecies plant–animal interactions. Annu Rev Ecol Evol Syst 35:435–466CrossRefGoogle Scholar
  40. Strauss SY, Whittall JB (2006) Non-pollinator agents of selection on floral traits. In: Harder LD, Barret SCH (eds) Ecology and evolution of flowers. Oxford University Press, New York, pp 120–138Google Scholar
  41. Strauss SY, Irwin RE, Lambrix VM (2004) Optimal defence theory and flower petal colour predict variation in the secondary chemistry of wild radish. J Ecol 92:132–141CrossRefGoogle Scholar
  42. Streisfeld MA, Kohn JR (2005) Contrasting patterns of floral and molecular variation across a cline in Mimulus aurantiacus. Evolution 59:2548–2559CrossRefPubMedGoogle Scholar
  43. Streisfeld MA, Kohn JR (2007) Environment and pollinator-mediated selection on parapatric floral races of Mimulus aurantiacus. J Evol Biol 20:122–132CrossRefPubMedGoogle Scholar
  44. Struwe L, Albert VA (2002) Gentianaceae: systematics and natural history. Cambridge University Press, CambridgeGoogle Scholar
  45. Tanaka Y, Ohmiya A (2008) Seeing is believing: engineering anthocyanin and carotenoid biosynthetic pathways. Curr Opin Biotechnol 19:190–197CrossRefPubMedGoogle Scholar
  46. Tanaka Y, Sasaki N, Ohmiya A (2008) Biosynthesis of plant pigments: anthocyanins, betalains and carotenoids. Plant J 54:733–749CrossRefPubMedGoogle Scholar
  47. Veiga T, Galetto L, Machado I (2013) Nectar regulation in Euphorbia tithymaloides L., a hummingbird pollinated Euphorbiaceae. Plant Biol 15:910–918Google Scholar
  48. Zhu C, Yamamura S, Koiwa H, Nishihara M, Sandmann G (2002) cDNA cloning and expression of carotenogenic genes during flower development in Gentiana lutea. Plant Mol Biol 48:277–285CrossRefPubMedGoogle Scholar
  49. Zhu C, Yamamura S, Nishihara M, Koiwa H, Sandmann G (2003) cDNAs for the synthesis of cyclic carotenoids in petals of Gentiana lutea and their regulation during flower development. Biochim Biophys Acta 1625:305–308CrossRefPubMedGoogle Scholar
  50. Zhu C, Bai C, Sanahuja G, Yuan D, Farré G, Naqvi S, Shi L, Capell T, Christou P (2010) The regulation of carotenoid pigmentation in flowers. Arch Biochem Biophys 504:132–141CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Tania Veiga
    • 1
  • Javier Guitián
    • 1
  • Pablo Guitián
    • 1
  • José Guitián
    • 2
  • Mar Sobral
    • 3
  1. 1.Department of BotanyUniversity of Santiago de CompostelaGaliciaSpain
  2. 2.Area of EcologyUniversity of Santiago de CompostelaGaliciaSpain
  3. 3.Department of BiologyStanford UniversityStanfordUSA

Personalised recommendations