Evolutionary Ecology

, Volume 29, Issue 3, pp 391–403

The function of ant repellence by flowers: testing the “nectar protection” and “pollinator protection” hypotheses

  • Francisco G. Gonzálvez
  • J. Chen
  • Miguel A. Rodríguez-Gironés
Original Paper

Abstract

According to the “nectar protection” and “pollinator protection” hypotheses, ant repellents in flowers have evolved to prevent ants from exploiting floral nectar and chasing away pollinators, respectively. We used weaver ants, Oecophylla smaragdina, to determine the strength of ant repellence in 32 bee-pollinated plant species and used the comparative method to test whether nectar production, size of pollinating bees and plant growth form were related to floral repellence. Flowers were more likely to repel ants if they offered nectar as a reward and were pollinated by small bees than if they were nectarless and pollinated by large bees. Furthermore, tree flowers were more likely than shrub or vine flowers to repel ants. Our results validate the pollinator protection hypothesis and the nectar protection hypothesis. Depending on the ecological context, therefore, ant repellents can function as direct or indirect exploitation barriers: they can prevent ants from removing nectar without effecting pollination (direct barriers) and, when flowers are pollinated by large bees, the absence of ant repellents—or even the presence of ant attractants—can result in ants chasing small ineffective pollinators away (indirect barriers).

Keywords

Ant repellents Nectar Bee size Plant growth form Pollination 

Supplementary material

10682_2014_9742_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 21 kb)

References

  1. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) 2nd international symposium on information theory. Budapest, Akademia Kiado, pp 267–281Google Scholar
  2. Ballantyne G, Willmer P (2012) Nectar theft and floral ant-repellence: a link between nectar volume and ant-repellent traits? PLoS ONE 7(8):10CrossRefGoogle Scholar
  3. Baroni Urbani C, de Andrade ML (1997) Pollen eating, storing, and spitting by ants. Naturwissenschaften 84(6):256–258CrossRefGoogle Scholar
  4. Bista S, Shivakoti K (2011) Honeybee flora at Kabre, Dolakha District. Nepal Agric Res J 4–5:18–25Google Scholar
  5. Bluthgen N, Fiedler K (2004) Competition for composition: lessons from nectar-feeding ant communities. Ecology 85(6):1479–1485CrossRefGoogle Scholar
  6. Bremer B, Bremer K, Chase MW et al (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141(4):399–436CrossRefGoogle Scholar
  7. Burnham KP, Anderson DR, Huyvaert KP (2011) AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav Ecol Sociobiol 65(1):23–35CrossRefGoogle Scholar
  8. Corbet SA, Willmer PG (1980) Pollination of the yellow passionfruit—nectar, pollen and carpenter bees. J Agric Sci 95:655–666CrossRefGoogle Scholar
  9. Crozier RH, Newey PS, Schluns EA, Robson SKA (2010) A masterpiece of evolution—Oecophylla weaver ants (Hymenoptera: Formicidae). Myrmecol News 13:57–71Google Scholar
  10. Davidson DW (1997) The role of resource imbalances in the evolutionary ecology of tropical arboreal ants. Biol J Linn Soc 61(2):153–181CrossRefGoogle Scholar
  11. Davidson DW, Cook SC, Snelling RR, Chua TH (2003) Explaining the abundance of ants in lowland tropical rainforest canopies. Science 300(5621):969–972CrossRefPubMedGoogle Scholar
  12. Dejean A, Corbara B, Orivel J, Leponce M (2007) Rainforest Canopy Ants: the implications of territoriality and predatory behavior. Funct Ecosyst Commun 1(2):105–120Google Scholar
  13. Devall MS, Thien LB (1989) Factors influencing the reproductive success of Ipomoea pes-caprae (Convolvulaceae) around the Gulf of Mexico. Am J Bot 76(12):1821–1831CrossRefGoogle Scholar
  14. Devy MS, Davidar P (2003) Pollination systems of trees in Kakachi, a mid-elevation wet evergreen forest in Western Ghats, India. Am J Bot 90(4):650–657CrossRefPubMedGoogle Scholar
  15. Dulberger R (1981) The floral biology of Cassia didymobotrya and Cassia auriculata (Caesalpiniaceae). Am J Bot 68(10):1350–1360CrossRefGoogle Scholar
  16. Efloras (2008) Missouri Botanical Garden, St. Louis, MO and Harvard University Herbaria, Cambridge, MA. http://www.efloras.org. Accessed February 2014
  17. Endress PK (1996) Diversity and evolutinary biology of tropical flowers. Cambridge University Press, CambridgeGoogle Scholar
  18. Fiala B, Krebs SA, Barlow HS, Maschwitz U (1996) Interactions between the climber Thunbergia grandiflora, its pollinator Xylocopa latipes and the ant Dolichoderus thoracicus: the “nectar-thief hypothesis” refuted? Malay Nat J 50(1):1–14Google Scholar
  19. Galen C (1999) Flowers and enemies: predation by nectar-thieving ants in relation to variation in floral form of an alpine wildflower, Polemonium viscosum. Oikos 85(3):426–434CrossRefGoogle Scholar
  20. Galen C, Cuba J (2001) Down the tube: pollinators, predators, and the evolution of flower shape in the alpine skypilot, Polemonium viscosum. Evolution 55(10):1963–1971CrossRefPubMedGoogle Scholar
  21. Ghazoul J (2001) Can floral repellents pre-empt potential ant-plant conflicts? Ecol Lett 4(4):295–299CrossRefGoogle Scholar
  22. Gómez JM, Zamora R (1992) Pollination by ants—consequences of the quantitative effects on a mutualistic system. Oecologia 91(3):410–418CrossRefGoogle Scholar
  23. Gómez JM, Zamora R, Hodar JA et al (1996) Experimental study of pollination by ants in Mediterranean high mountain and arid habitats. Oecologia 105(2):236–242CrossRefGoogle Scholar
  24. Gonzálvez FG, Rodríguez-Gironés MA (2013) Seeing is believing: information content and behavioural response to visual and chemical cues. Proc Biol Sci R Soc 280(1763):20130886CrossRefGoogle Scholar
  25. Gonzálvez FG, Santamaría L, Corlett RT et al (2013) Flowers attract weaver ants that deter less effective pollinators. J Ecol 101:78–85CrossRefGoogle Scholar
  26. Harley R (1991) The greasy pole syndrome. In: Huxley CR, Cutler DF (eds) Ant–plant interactions. Oxford University Press, Oxford, pp 430–433Google Scholar
  27. Heard TA (1999) The role of stingless bees in crop pollination. Annu Rev Entomol 44:183–206CrossRefPubMedGoogle Scholar
  28. Inc StatSoft (2011) Electronic statistics textbook. StatSoft, TulsaGoogle Scholar
  29. Janzen DH (1966) Coevolution of mutualism between ants and Acacias in Central America. Evolution 20(3):249–275CrossRefGoogle Scholar
  30. Junker RR, Bluthgen N (2008) Floral scents repel potentially nectar-thieving ants. Evol Ecol Res 10(2):295–308Google Scholar
  31. Junker RR, Chung YC, Bluthgen N (2007) Interaction between flowers, ants and pollinators: additional evidence for floral repellence against ants. Ecol Res 22(4):665–670CrossRefGoogle Scholar
  32. Junker RR, Daehler CC, Dotterl S et al (2011) Hawaiian ant-flower networks: nectar-thieving ants prefer undefended native over introduced plants with floral defenses. Ecol Monogr 81(2):295–311CrossRefGoogle Scholar
  33. Kato M (2000) Anthophilous insect community and plant–pollinator interactions on Amami Islands in the Ryukyu Archipelago, Japan. Contrib Biol Lab Kyoto Univ 29(2):157–254Google Scholar
  34. Kato M, Kosaka Y, Kawakita A et al (2008) Plant–pollinator interactions in tropical monsoon forests in Southeast Asia. Am J Bot 95(11):1375–1394CrossRefPubMedGoogle Scholar
  35. Maddison WP, Maddison DR (2009) Mesquite: a modular system for evolutionary analysis. Version 2.75. http://mesquiteproject.org
  36. Martins EP, Hansen TF (1997) Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am Nat 149(4):646–667CrossRefGoogle Scholar
  37. McDade LA, Daniel TF, Kiel CA (2008) Toward a comprehensive understanding of phylogenetic relationships among lineages of Acanthaceae s.l. (Lamiales). Am J Bot 95(9):1136–1152CrossRefPubMedGoogle Scholar
  38. Momose K, Yumoto T, Nagamitsu T et al (1998) Pollination biology in a lowland dipterocarp forest in Sarawak, Malaysia. I. Characteristics of the plant–pollinator community in a lowland dipterocarp forest. Am J Bot 85(10):1477–1501CrossRefPubMedGoogle Scholar
  39. Murali KS (1993) Differential reproductive success in Cassia fistula in different habitats—a case of pollinator limitation. Curr Sci 65(3):270–272Google Scholar
  40. Nicklen EF, Wagner D (2006) Conflict resolution in an ant–plant interaction: Acacia constricta traits reduce ant cost to reproduction. Oecologia 148:81–87CrossRefPubMedGoogle Scholar
  41. Offenberg J, Havanon S, MacIntosh D et al (2004a) Observations on the ecology of weaver ants (Oecophylla smaragdina Fabricius) in a Thai mangrove ecosystem and their effect on herbivory of Rhizophora mucronata Lam. Biotropica 36:344–351Google Scholar
  42. Offenberg J, Nielsen MG, MacIntosh DJ et al (2004b) Evidence that insect herbivores are deterred by ant pheromones. Proc R Soc Lond B 271:S433–S435CrossRefGoogle Scholar
  43. Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401(6756):877–884CrossRefPubMedGoogle Scholar
  44. Parker IM, Lopez I, Petersen JJ et al (2010) Domestication syndrome in Caimito (Chrysophyllum cainito L.): fruit and seed characteristics. Econ Bot 64(2):161–175CrossRefPubMedCentralPubMedGoogle Scholar
  45. Pascarella JB (1997) Breeding systems of Ardisia Sw (Myrsinaceae). Brittonia 49(1):45–53CrossRefGoogle Scholar
  46. Punekar SA, Kumaran NKP, Bhat HR (2010) Observations on an unusual behaviour in the carpenter bee Xylocopa aestuans (Latreille, 1802) (Hymenoptera: Apidae) of the Wetern Ghats, India. J Threat Taxa 2(10):1232–1233CrossRefGoogle Scholar
  47. R Development Core Team (2010) R: a language and evironment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  48. Raine NE, Willmer P, Stone GN (2002) Spatial structuring and floral avoidance behavior prevent ant-pollinator conflict in a Mexican ant-acacia. Ecology 83(11):3086–3096Google Scholar
  49. Raju AJS, Rao SP (2006) Nesting habits, floral resources and foraging ecology of large carpenter bees (Xylocopa latipes and Xylocopa pubescens) in India. Curr Sci 90(9):1210–1217Google Scholar
  50. Reddi CS, Das RK, Aluri RJS, Aluri JB (1996) Sexual system and pollination ecology of Gmelina asiatica L. (Vervenaceae). J Palynol 32:41–50Google Scholar
  51. Rodriguez-Girones MA, Santamaria L (2005) Resource partitioning among flower visitors and evolution of nectar concealment in multi-species communities. Proc R Soc B Biol Sci 272(1559):187–192CrossRefGoogle Scholar
  52. Rodríguez-Gironés MA, Gonzálvez FG, Llandres AL et al (2013) Possible role of weaver ants, Oecophylla smaragdina, in shaping plant–pollinator interactions in South-East Asia. J Ecol 101(4):1000–1006Google Scholar
  53. Romero GQ, Antiqueira PAP, Koricheva J (2011) A meta-analysis of predation risk effects on pollinator behaviour. PLoS ONE 6(6):9CrossRefGoogle Scholar
  54. Schaeferhoff B, Fleischmann A, Fischer E et al (2010) Towards resolving Lamiales relationships: insights from rapidly evolving chloroplast sequences. BMC Evol Biol 10:352Google Scholar
  55. Singh G (2004) Plant systematics: an integrated approach. Science Publishers Inc, New YorkGoogle Scholar
  56. Siqueira de Castro M (2002) Bee fauna of some tropical and exotic fruits: potencial pollinators and their conservation. In: Kevan P, Fonseca VI (eds) Pollinating bees—the consevation link between agriculture and nature. Ministry of Envirinment, BrasiliaGoogle Scholar
  57. Thomas SG, Rehel SM, Varghese A et al (2009) Social bees and food plant associations in the Nilgiri Biosphere Reserve, India. Trop Ecol 50(1):79–88Google Scholar
  58. Thompson JN (1982) Interaction and coevolution. Wiley, New YorkCrossRefGoogle Scholar
  59. Tsuji K, Hasyim A, Harlion, Nakamura K (2004) Asian weaver ants, Oecophylla smaragdina, and their repelling of pollinators. Ecol Res 19(6):669–673Google Scholar
  60. Van Mele P, Vayssieres JF, Abandonon A et al (2009) Ant cues affect the oviposition behaviour of fruit flies (Diptera: Tephritidae) in Africa. Physiol Entomol 34:256–261CrossRefGoogle Scholar
  61. Willmer PG, Stone GN (1997) How aggressive ant-guards assist seed-set in Acacia flowers. Nature 388(6638):165–167CrossRefGoogle Scholar
  62. Willmer PG, Nuttman CV, Raine NE et al (2009) Floral volatiles controlling ant behaviour. Funct Ecol 23(5):888–900CrossRefGoogle Scholar
  63. Wojciechowski MF (2003) Reconstructing the phylogeny of legumes (Leguminosae): an early 21st century perpective. In: Klitgaard BB, Bruneau A (eds) Advances in legume systematics. Royal Botanic Gardens, Kew, pp 5–35Google Scholar
  64. Wurdack KJ, Davis CC (2009) Malpiguiales phylogenetics: gaining ground on one of the most recalcitrant clades in the angiosperm tree of life. Am J Bot 96(8):1551–1570CrossRefPubMedGoogle Scholar
  65. Yamasaki E, Sakai S (2013) Wind and insect pollination (ambophily) of Mallotus spp. (Euphorbiaceae) in tropical and temperate forests. Aust J Bot 61(1):60–66CrossRefGoogle Scholar
  66. Yanoviak SP, Kaspari M (2000) Community structure and the habitat templet: ants in the tropical forest canopy and litter. Oikos 89(2):259–266CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Francisco G. Gonzálvez
    • 1
  • J. Chen
    • 2
  • Miguel A. Rodríguez-Gironés
    • 1
  1. 1.Estación Experimental de Zonas Áridas, EEZA-CSICAlmeriaSpain
  2. 2.Xishuangbanna Tropical Botanical GardenChinese Academy of SciencesMenglaChina

Personalised recommendations