Evidence of taxa-, clone-, and kin-discrimination in protists: ecological and evolutionary implications

Abstract

Unicellular eukaryotes, or protists, are among the most ancient organisms on Earth. Protists belong to multiple taxonomic groups; they are widely distributed geographically and in all environments. Their ability to discriminate among con- and heterospecifics has been documented during the past decade. Here we discuss exemplar cases of taxa-, clone-, and possible kin-discrimination in five major lineages: Mycetozoa (Dictyostelium, Polysphondylium), Dikarya (Saccharomyces), Ciliophora (Tetrahymena), Apicomplexa (Plasmodium) and Archamoebae (Entamoeba). We summarize the proposed genetic mechanisms involved in discrimination-mediated aggregation (self vs. different), including the csA, FLO and trg (formerly lag) genes, and the Proliferation Activation Factors, which facilitate clustering in some protistan taxa. We caution about the experimental challenges intrinsic to studying recognition in protists, and highlight the opportunities for exploring the ecology and evolution of complex forms of cell–cell communication, including social behavior, in a polyphyletic, still superficially understood group of organisms. Because unicellular eukaryotes are the evolutionary precursors of multicellular life, we infer that their mechanisms of taxa-, clone-, and possible kin-discrimination gave origin to the complex diversification and sophistication of traits associated with species and kin recognition in plants, fungi, invertebrates and vertebrates.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Abbreviations

HGT:

Horizontal gene transfer

EPAFs:

Entamoeba Proliferation Activating Factors

TPAFs:

Tetrahymena Proliferation Activating Factors

References

  1. Benabentos R, Hirose S, Sucgang R, Curk T, Katoh M, Ostrowski EA, Strassmann JE, Queller DC, Zupan B, Shaulsky G, Kuspa A (2009) Polymorphic members of the lag gene family mediate kin discrimination in Dictyostelium. Curr Biol 19:567–572

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  2. Bruto M, Prigent-Combaret C, Luis P, Hoff G, Moënne-Loccoz Y, Muller D (2013) Horizontal acquisition of prokaryotic genes for eukaryote functioning and niche adaptation. In: Pontarotti P (ed) Evolutionary biology: exobiology and evolutionary mechanisms. Springer, Berlin, pp 165–179

    Google Scholar 

  3. Caron DA (2013) Towards a molecular taxonomy for protists: benefits, risks, and applications in plankton ecology. J Eukaryot Microbiol 60:407–413

    PubMed  Article  Google Scholar 

  4. Chaine AS, Schtickzelle N, Polard T, Huet M, Clobert J (2010) Kin-based recognition and social aggregation in a ciliate. Evolution 64:1290–1300

    PubMed  Google Scholar 

  5. Clark CG, Diamond LS (1997) Intraspecific variation and phylogenetic relationships in the genus Entamoeba as revealed by riboprinting. J Eukaryot Microbiol 44:142–154

    PubMed  Article  CAS  Google Scholar 

  6. Clark CG, Kaffashian F, Tawari B, Windsor JJ, Twigg-Flesner A, Davies-Morel MCG, Blessmann J, Ebert F, Peschel B, Van AL, Jackson CJ, Macfarlane L, Tannich E (2006) New insights into the phylogeny of Entamoeba spp. provided by analysis of four new small-subunit rRNA genes. Int J Syst Evol Microbiol 56:2235–2239

    PubMed  Article  CAS  Google Scholar 

  7. Dawkins R (1976) The selfish gene. Oxford University Press, Oxford

    Google Scholar 

  8. Dreyer DA (1961) Growth of a strain of Entamoeba histolytica at room temperature. Tex Rep Biol Med 19:393–396

    PubMed  CAS  Google Scholar 

  9. Espinosa A, Paz-y-Miño-C G (2012) Discrimination, crypticity and incipient taxa in Entamoeba. J Eukaryot Microbiol 59:105–110

    PubMed  Article  PubMed Central  Google Scholar 

  10. Espinosa A, Paz-y-Miño-C G (in press) Examining crypticity in Entamoeba: a behavioral and biochemical tale. In: Trueba G (ed) Why does evolution matter? The importance of understanding evolution. Cambridge Scholars, Cambridge

  11. Foster KR (2005) Hamiltonian medicine: why the social lives of pathogens matter. Science 308:1269–1270

    PubMed  Article  CAS  Google Scholar 

  12. Gardner A, West SA (2010) Greenbeards. Evolution 64:25–38

    PubMed  Article  Google Scholar 

  13. Ghoul M, Griffin AS, West SA (2014) Toward an evolutionary definition of cheating. Evolution 68:318–331

    PubMed  Article  Google Scholar 

  14. Gilbert OM, Strassmann JE, Queller DC (2012) High relatedness in a social amoeba: the role of kin discriminatory segregation. Proc R Soc B 279:2619–2624

    PubMed  Article  PubMed Central  Google Scholar 

  15. Gray CW, Marcus LC, McCarten WC, Sappington T (1966) Amoebiasis in the Komodo dragon. Int Zoo Yearb 6:279–283

    Article  Google Scholar 

  16. Hamilton WD (1964) The genetical evolution of social behaviour I. J Theor Biol 7:1–16

    PubMed  Article  CAS  Google Scholar 

  17. Hamilton WD (1967) Extraordinary sex ratios. Science 156:477–488

    PubMed  Article  CAS  Google Scholar 

  18. Herbers JM (2013) 50 years on: the legacy or William Donald Hamilton. Biol Lett 9:20130792

    PubMed  Article  Google Scholar 

  19. Hirose S, Benabentos R, Ho H-I, Kuspa A, Shaulsky G (2011) Self-recognition in social Amoebae is mediated by allelic pairs of Tiger genes. Science 333:467–470

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  20. Kalla SE, Queller DC, Lasagni A, Strassmann JE (2011) Kin discrimination and possible cryptic species in the social amoeba Polysphondylium violaceum. BMC Evol Biol 11:31. doi:10.1186/1471-2148-11-31

    PubMed  Article  PubMed Central  Google Scholar 

  21. Kamel SJ, Grosberg RK (2013) Kinship and the evolution of social behaviours in the sea. Biol Lett 9:20130454

    PubMed  Article  Google Scholar 

  22. Kaushik S, Katoch B, Nanjundiah V (2006) Social behaviour in genetically heterogeneous groups of Dictyostelium giganteum. Behav Ecol Sociobiol 59:521–530

    Article  Google Scholar 

  23. Lecointre G, Le Guyader H (2006) The tree of life: a phylogenetic classification. The Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  24. Maynard-Smith J (1964) Group selection and kin selection. Nature 211:1145–1147

    Article  Google Scholar 

  25. Medeiros MCI, Hamer GL, Ricklefs RE (2013) Host compatibility rather than vector-host-ecounter rate determines the host range of avian Plasmodium parasites. Proc R Soc B 280:20122947

    PubMed  Article  PubMed Central  Google Scholar 

  26. Meerovitch E (1958) A new host of Entamoeba invadens Rodhain, 1934. Can J Zool 36:423–427

    Article  Google Scholar 

  27. Mehdiabadi NJ, Jack CN, Talley-Farnham T, Platt TG, Kalla SE, Shaulsky G, Queller DC, Strassmann JE (2006) Kin preference in a social microbe. Nature 442:881–882

    PubMed  Article  CAS  Google Scholar 

  28. Mideo N, Reece SE (2012) Plasticity in parasite phenotypes: evolutionary and ecological implications for disease. Future Microbiol 7:17–24

    PubMed  Article  Google Scholar 

  29. Mitta G, Adema CM, Gourbal B, Loker ES, Theron A (2012) Compatibility polymorphism in snail/schistosome interactions: from field to theory to molecular mechanisms. Dev Comp Immunol 37:1–8

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  30. Nkhoma SC, Nair S, Cheeseman IH, Rohr-Allegrini C, Singlam S, Nosten F, Anderson TJC (2012) Close kinship within multiple-genotype malaria parasite infections. Proc R Soc B 279:2589–2598

    PubMed  Article  PubMed Central  Google Scholar 

  31. Ostrowski EA, Katoh M, Shaulsky G, Queller DC, Strassmann JE (2008) Kin discrimination increases with genetic distance in a social amoeba. PLoS Biol 6:e287. doi:10.1371/journal.pbio.0060287

    PubMed  Article  PubMed Central  Google Scholar 

  32. Pawlowski J (2013) The new micro-kingdoms of eukaryotes. BMC Biol. doi:10.1186/1741-7007-11-40

    PubMed  PubMed Central  Google Scholar 

  33. Paz-y-Miño-C G, Espinosa A (2010) Integrating horizontal gene transfer and common descent to depict evolution and contrast it with “common design”. J Eukaryot Microbiol 57:11–18

    PubMed  Article  Google Scholar 

  34. Penn DJ, Frommen JG (2010) Kin recognition: an overview of conceptual issues, mechanisms and evolutionary theory. In: Kappeler PM (ed) Animal behaviour: evolution and mechanisms. Springer, Berlin, pp 55–85

    Google Scholar 

  35. Pollitt LC, MacGregor P, Mathews K, Reece SE (2011) Malaria and trypanosome transmission: different parasites, same rules? Trends Parasitol 27:197–203

    PubMed  Article  PubMed Central  Google Scholar 

  36. Queller DC, Ponte E, Bozzaro S, Strassmann JE (2003) Single-gene greenbeard effects in the social amoeba Dictyostelium discoideum. Science 299:105–106

    PubMed  Article  CAS  Google Scholar 

  37. Reece SE, Drew DR, Gardner A (2008) Sex ratio adjustment and kin discrimination in malaria parasites. Nature 453:609–614

    PubMed  Article  CAS  Google Scholar 

  38. Romeralo M, Escalante R, Baldauf SL (2012) Evolution and diversity of dictyostelid social amoebae. Protist 163:327–343

    PubMed  Article  CAS  Google Scholar 

  39. Schall JJ (2008) Sex rations writ small. Nature 453:605–606

    PubMed  Article  CAS  Google Scholar 

  40. Smukalla S, Caldara M, Pochet N, Beauvais A, Guadagnini S, Yan C, Vinces MD, Jansen A, Prevost MC, Latgé JP, Fink GR, Foster KR, Vestrepen KJ (2008) FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell 135:726–737

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  41. Stensvold CR, Lebbad M, Clark CG (2010) Genetic characterisation of uninucleated cyst-producing Entamoeba spp. from ruminants. Int J Parasitol 40:775–778

    PubMed  Article  CAS  Google Scholar 

  42. Stoeck T, Stock A (2010) The protistan gap in the eukaryotic tree of life. Palaeodiversity 3:151–154

    Google Scholar 

  43. Strassmann JE, Queller DC (2011) How social evolution theory impacts our understanding of development in the social amoeba Dictyostelium. Dev Growth Differ 53:597–607

    PubMed  Article  Google Scholar 

  44. Théron A, Coustau C (2005) Are Biomphalaria snails resistant to Schistosoma mansoni? J Helminthol 79:187–191

    PubMed  Article  Google Scholar 

Download references

Acknowledgments

We thank John A Endler for inviting us to write this article as part of our contribution to the Species Recognition Systems Symposium held in Lisbon, Portugal, August 2013, and sponsored by the European Society for Evolutionary Biology. A Espinosa is supported by NIH grant 8P20GM103430-13. Both authors are sponsored by New England Science Public and the Roger Williams University’s Center for the Public Understanding of Science. Two anonymous reviewers provided valuable comments to improve the manuscript.

Conflict of interest

The authors declare no competing interests.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Avelina Espinosa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Espinosa, A., Paz-y-Miño-C, G. Evidence of taxa-, clone-, and kin-discrimination in protists: ecological and evolutionary implications. Evol Ecol 28, 1019–1029 (2014). https://doi.org/10.1007/s10682-014-9721-z

Download citation

Keywords

  • Altruism
  • Green-beard effect
  • Kin selection
  • Local mate competition
  • Recognition alleles
  • Sex ratio