Skip to main content
Log in

Instability of novel ant-fungal associations constrains horizontal exchange of fungal symbionts

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

One of the more fascinating features of fungus-gardening ants (Attini: Formicidae) is their fidelity to their lineage-specific fungal symbionts. Among the derived higher-attine ants (leafcutter ants and close relatives), it is thought that most leaf-cutting ants grow Attamyces fungus whereas most Trachymyrmex ants grow ‘Trachymyces’ fungus, but there exist exceptions to this clade-to-clade correspondence between ants and fungi. The exceptions are inconsistent with strict one-to-one coevolution, which suggests that ants sometimes are able to switch to novel fungi. Such switches appear to be largely constrained and ants are generally faithful to their species-specific fungi. Prior experiments demonstrated no clear fitness consequences of growing novel fungi over the short-term when the ant Trachymyrmex septentrionalis was symbiont-switched by forcing it to grow Attamyces leaf-cutter fungus. We hypothesized that long-term ant-fungal fidelity is constrained either by physiological differences among fungal species or by garden diseases that symbiont-switched ants cannot control. Repeat experiments in a different location show that T. septentrionalis colonies switched to grow Attamyces exhibit sudden declines in garden biomass and consequent fitness reductions due to garden destruction by pathogens, whereas control colonies (Trachymyrmex ants cultivating Trachymyces fungus) do not show parallel garden declines. These patterns are mirrored in symbiont-switch experiments conducted on colonies in Trachymyrmex turrifex. Disease microbes selecting on ant-cultivar combinations therefore can constrain switches to novel cultivars and maintain combinations that are more resistant to disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aanen DK, Eggleton P (2005) Fungus-growing termites originated in African rain forest. Curr Biol 15:851–855

    Article  CAS  PubMed  Google Scholar 

  • Aanen DK, Eggleton P, Rouland-Lefevre C, Guldberg-Froslev T, Rosendahl S, Boomsma JJ (2002) The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc Natl Acad Sci USA 99:14887–14892

    Article  CAS  PubMed  Google Scholar 

  • Aylward F, Burnum K, Scott J, Suen G, Tringe S, Adams S, Barry K, Nicora C, Piehowski P, Purvine S, Starrett G, Goodwin L, Smith R, Lipton M, Currie C (2012a) Metagenomic and metaproteomic insights into bacterial communities in leaf-cutter ant fungus gardens. ISME J 6:1688–1701

    Article  CAS  PubMed  Google Scholar 

  • Aylward F, Currie C, Suen G (2012b) The evolutionary innovation of nutritional symbioses in leaf-cutter ants. Insects 3:41–61

    Article  Google Scholar 

  • Barke J, Seipke R, Grüschow S, Heavens D, Drou N, Bibb M, Goss R, Yu DW, Hutchings M (2010) A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrmex octospinosus. BMC Biol 8:109

    Article  PubMed Central  PubMed  Google Scholar 

  • Bourke AFG, Franks NR (1995) Social evolution in ants. Princeton University Press, Princeton

    Google Scholar 

  • Brandão CRF, Mayhé-Nunes AJ (2007) A phylogenetic hypothesis for the Trachymyrmex species groups, and the transition from fungus-growing to leaf-cutting in the attini. In: Snelling RR, Fisher BL, Ward PS (eds) Advances in ant systematics (Hymenoptera: Formicidae): homage to E. O. Wilson—50 years of contributions. Memoirs of the American Entomological Institute

  • Cafaro M, Poulsen M, Little AEF, Price S, Gerardo NM, Wong B, Stuart AE, Larget B, Abbot P, Currie CR (2011) Specificity in the symbiotic association between fungus-growing ants and protective Pseudonocardia bacteria. Proc R Soc B 278:1814–1822

    Article  PubMed  Google Scholar 

  • Chapela IH, Rehner SA, Schultz TR, Mueller UG (1994) Evolutionary history of the symbioses between fungus-growing ants and their fungi. Science 266:1691–1694

    Article  CAS  PubMed  Google Scholar 

  • Currie CR, Stuart AE (2001) Weeding and grooming of pathogens in agriculture by ants. Proc R Soc Lond B Biol Sci 1471:1033–1039

    Article  Google Scholar 

  • Currie CR, Mueller UG, Malloch D (1999a) The agricultural pathology of ant fungus gardens. Proc Natl Acad Sci USA 96:7998–8002

    Article  CAS  PubMed  Google Scholar 

  • Currie CR, Scott JA, Summerbell RC, Malloch D (1999b) Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398:701–704

    Article  CAS  Google Scholar 

  • Currie CR, Bot ANM, Boomsma JJ (2003a) Experimental evidence of a tripartite mutualism: bacteria protect ant fungus gardens from specialized parasites. Oikos 101:91–102

    Article  Google Scholar 

  • Currie CR, Wong B, Stuart AE, Schultz TR, Rehner SA, Mueller UG, Sung GH, Spatafora JW, Straus NA (2003b) Ancient tripartite coevolution in the attine ant-microbe symbiosis. Science 299:386–388

    Article  CAS  PubMed  Google Scholar 

  • Currie CR, Poulsen M, Mendenhall J, Boomsma JJ, Billen J (2006) Coevolved crypts and exocrine glands support mutualistic bacteria in fungus-growing ants. Science (Washington D. C.) 311:81–83

    Article  CAS  Google Scholar 

  • de Fine Licht H, Biedermann P (2012) Patterns of functional enzyme activity in fungus farming ambrosia beetles. Front Zool 9:13

    Article  PubMed Central  PubMed  Google Scholar 

  • de Fine Licht H, Boomsma J (2010) Forage collection, substrate preparation, and diet composition in fungus-growing ants. Ecol Entomol 35:259–269

    Article  Google Scholar 

  • de Fine Licht HH, Schiøtt M, Mueller UG, Boomsma JJ (2010) Evolutionary transitions in enzyme activity of ant fungus gardens. Evolution 64:2055–2069

    PubMed  Google Scholar 

  • Erthal M Jr, Silva CP, Samuels RI (2004) Digestive enzymes of leaf-cutting ants, Acromyrmex subterraneus (Hymenoptera: Formicidae: Attini): distribution in the gut of adult workers and partial characterization. J Insect Physiol 50:881–891

    Article  CAS  PubMed  Google Scholar 

  • Erthal M, Silva C, Cooper R, Samuels R (2009) Hydrolytic enzymes of leaf-cutting ant fungi. Comp Biochem Physiol B 152:54–59

    Article  PubMed  Google Scholar 

  • Farrell BD, Sequeira AS, O’Meara BC, Normark BB, Chung JH, Jordal BH (2001) The evolution of agriculture in beetles (Curculionidae : Scolytinae and Platypodinae). 55:2011–2027

  • Fell J, Hunter I (1979) Fungi associated with the decomposition of the black rush Juncus roemerianus. 71:322–342

  • Fernández-Marín H, Zimmerman JK, Wcislo WT (2004) Ecological traits and evolutionary sequence of nest establishment in fungus-growing ants (Hymenoptera, Formicidae, Attini. Biol J Linn Soc 81:39–48

    Article  Google Scholar 

  • Fernández-Marín H, Zimmerman JK, Rehner SA, Wcislo WT (2006) Active use of the metapleural glands by ants in controlling fungal infection. Proc R Soc Lond B 273:1689–1695

    Article  Google Scholar 

  • Fernández-Marín H, Zimmerman JK, Nash DR, Boomsma JJ, Wcislo WT (2009) Reduced biological control and enhanced chemical pest management in the evolution of fungus farming in ants. Proc R Soc B 276:2263–2269

    Article  PubMed  Google Scholar 

  • Fisher PJ, Stradling DJ, Pegler DN (1994) Leucoagaricus basidiomata from a live nest of the leaf-cutting ant Atta cephalotes. Mycol Res 98:884–888

    Article  Google Scholar 

  • Green AM, Mueller UG, Adams RMM (2002) Extensive exchange of fungal cultivars between sympatric species of fungus-growing ants. Mol Ecol 11:191–195

    Article  CAS  PubMed  Google Scholar 

  • Haeder S, Wirth R, Herz H, Spiteller D (2009) Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. 106:4742–4746

  • Hölldobler B, Wilson EO (2008) The superorganism: the beauty, elegance and strangeness of insect societies. W.W Norton and Company, New York

    Google Scholar 

  • Hölldobler B, Wilson EO (2011) The leafcutter ants. W.W Norton and Company, New York

    Google Scholar 

  • Hood WG, Tschinkel WR (1990) Desiccation resistance in arboreal and terrestrial ants. Physiol Entomol 15:23–35

    Article  Google Scholar 

  • Huber J (1905) Über die Koloniengründung bei Atta sexdens. Biologisches Centralblatt 25:606–635

    Google Scholar 

  • Hughes WOH, Madsen HB, Dijkstra MB, Boomsma JJ (2008) Antimicrobial defense shows an abrupt evolutionary transition in the fungus-growing ants. Evolution 62:1252–1257

    Article  PubMed  Google Scholar 

  • Ishak H, Miller J, Sen R, Dowd SE, Meyer E, Mueller UG (2011) Microbiomes of ant castes implicate new microbial roles in the fungus-growing ant Trachymyrmex septentrionalis. Sci Rep 1:204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kaltenpoth M (2009) Actinobacteria as mutualists: general healthcare for insects? Trends Microbiol 17:529–535

    Article  CAS  PubMed  Google Scholar 

  • Keselman H, Algina J, Kowalchuk R (2001) The analysis of repeated measures designs: a review. Br J Math Stat Psychol 54:1–20

    Google Scholar 

  • Kuehn K, Koehn R (1988) A mycofloral survey of an artesian community within the Edwards Aquifer of central Texas. Mycologia 80:646–652

    Article  Google Scholar 

  • Leal IR, Oliveira PS (2000) Foraging ecology of attine ants in a Neotropical savanna: seasonal use of fungal substrate in the cerrado vegetation of Brazil. Insectes Soc 47:376–382

    Article  Google Scholar 

  • Little AEF, Murakami T, Mueller UG, Currie CR (2003) The infrabuccal pellet piles of fungus-growing ants. Naturwissenschaften 90:558–562

    Article  CAS  PubMed  Google Scholar 

  • Little AEF, Murakami T, Mueller U, Currie C (2006) Defending against parasites: fungus-growing ants combine specialized behaviours and microbial symbionts to protect their fungus gardens. Biol Lett 2:12–16

    Article  PubMed Central  PubMed  Google Scholar 

  • Martin MM (ed) (1987) The symbioses between the attine ants and the fungi they culture in their nests. In: Invertebrate-microbial Interactions. Ingested Fungal Enzymes in Arthropod Biology. Cornell University Press, Ithaca, pp 91–126

  • Mehdiabadi N, Mueller U, Brady S, Himler A, Schultz T (2012) Symbiont fidelity and the origin of species in fungus-growing ants. Nat Commun 3:840

    Article  PubMed  Google Scholar 

  • Migahed F (2003) Distribution of fungi in the sandy soil of Egyptian beaches. Mycobiology 31:61–67

    Article  Google Scholar 

  • Mikheyev AS, Mueller UG, Abbot P (2006) Cryptic sex and many-to-one coevolution in the fungus-growing ant symbiosis. Proc Natl Acad Sci USA 103:10702–10706

    Article  CAS  PubMed  Google Scholar 

  • Mikheyev AS, Mueller UG, Boomsma JJ (2007) Population genetic signatures of diffuse co-evolution between leaf-cutting ants and their cultivar fungi. Mol Ecol 16:209–216

    Article  CAS  PubMed  Google Scholar 

  • Mikheyev AS, Vo TL, Mueller UG (2008) Phylogeography of post-Pleistocene population expansion in a fungus-gardening ant and its microbial mutualists. Mol Ecol 17:4480–4488

    Article  CAS  PubMed  Google Scholar 

  • Mikheyev AS, Mueller UG, Abbot P (2010) Comparative dating of attine ant and lepiotaceous cultivar phylogenies reveals coevolutionary synchrony and discord. Am Nat 175:E126–E133

    Article  PubMed  Google Scholar 

  • Miller J, Giddens J, Foster A (1957) A survey of the fungi of forest and cultivated soils of Geogia. Mycologia 49:779–808

    Article  Google Scholar 

  • Mintzer AC (1987) Primary polygyny in the ant Atta texana: number and weight of females and colony foundation success in the laboratory. Insectes Soc 34:108–117

    Article  Google Scholar 

  • Mueller UG (2002) Ant versus fungus versus mutualism: ant-cultivar conflict and the deconstruction of the attine ant-fungus symbiosis. Am Nat 160:s67–s98

    Article  PubMed  Google Scholar 

  • Mueller UG (2012) Symbiont recruitment versus ant-symbiont co-evolution in the attine ant-microbe symbiosis. Curr Opin Microbiol 15:269–277

    Article  PubMed  Google Scholar 

  • Mueller UG, Gerardo N (2002) Fungus-farming insects: multiple origins and diverse evolutionary histories. Proc Natl Acad Sci USA 99:15247–15249

    Article  CAS  PubMed  Google Scholar 

  • Mueller UG, Rehner SA, Schulz TR (1998) The evolution of agriculture in ants. Science 281:2034–2038

    Article  CAS  PubMed  Google Scholar 

  • Mueller UG, Gerardo NM, Aanen DK, Six DL, Schultz TR (2005) The evolution of agriculture in insects. Ann Rev Ecol Syst 36:563–595

    Google Scholar 

  • Mueller UG, Dash D, Rabeling C, Rodrigues A (2008) Coevolution between attine ants and actinomycete bacteria: a reevaluation. Evolution 62:2894–2912

    Article  CAS  PubMed  Google Scholar 

  • Mueller U, Scott J, Ishak H, Cooper M, Rodrigues A (2010) Monoculture in leafcutter ant gardens. PLoS ONE 5:e12668

    Article  PubMed Central  PubMed  Google Scholar 

  • Mueller U, Mikheyev A, Hong E, Sen R, Warren D, Solomon S, Ishak H, Cooper M, Miller J, Shaffer K, Juenger T (2011a) Evolution of cold-tolerant fungal symbionts permits winter fungi culture by leafcutter ants at the northern frontier of a tropical ant-fungus symbiosis. Proc Natl Acad Sci USA 108:4053–4056

    Article  CAS  PubMed  Google Scholar 

  • Mueller UG, Mikheyev AS, Solomon SE, Cooper M (2011b) Frontier mutualism: coevolutionary patterns at the northern range limit of the leaf-cutter ant–fungus symbiosis. Proc R Soc Lond B Biol Sci 278:3050–3059

    Article  Google Scholar 

  • Oh DC, Poulsen M, Currie C, Clardy J (2009) Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis. Nat Chem Biol 5:391–393

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pagnocca FC, Bacci M Jr, Fungaro MH, Bueno OC, Hebling MJ, Sant’anna A, Capelari M (2001) RAPD analysis of the sexual state and sterile mycelium of the fungus cultivated by the leaf-cutting ant Acromyrmex hispidus fallax. Mycol Res 105:173–176

    Article  Google Scholar 

  • Poulsen M, Boomsma JJ (2005) Mutualistic fungi control crop diversity in fungus-growing ants. Science 307:741–744

    Article  CAS  PubMed  Google Scholar 

  • Quinlan RJ, Cherrett JM (1978) Studies on the role of the infrabuccal pocket of the leaf-cutting ant Acromyrmex octospinosus (Reich) (Hymenoptera: Formicidae). Insectes Soc 25:237–245

    Article  Google Scholar 

  • Rabeling C, Cover SP, Johnson RA, Mueller UG (2007) A review of the North American species of the fungus-gardening ant genus Trachymyrmex (Hymenoptera: Formicidae). Zootaxa 1664:1–53

    Google Scholar 

  • Rao M (2000) Variation in leaf-cutter ant (Atta sp.) densities in forest isolates: the potential role of predation. J Trop Ecol 16:209–225

    Article  Google Scholar 

  • Rodrigues A, Bacci MJ, Mueller UG, Ortiz A, Pagnocca FC (2008) Microfungal ‘weeds’ in the leafcutter ant symbiosis. Microb Ecol 56:604–614

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues A, Cable R, Mueller U, Bacci J, Pagnocca FC (2009) Antagonistic interactions between garden yeasts and microfungal garden pathogens of leaf-cutting ants. A van Leeuw J Microb 96:331–342

    Article  Google Scholar 

  • Rodrigues A, Mueller U, Ishak H, Bacci MJ, Pagnocca FC (2011) Ecology of microfungal communities in gardens of fungus-growing ants (Hymenoptera: Formicidae): a year-long survey of three species of attine ants in Central Texas. FEMS Microbiol Ecol 78:244–255

    Article  CAS  PubMed  Google Scholar 

  • Rønhede S, Boomsma JJ, Rosendahl S (2004) Fungal enzymes transferred by leaf-cutting ants in their fungus gardens. Mycol Res 108:101–106

    Article  PubMed  Google Scholar 

  • Sanchez-Peña S (2010) Some fungus-growing ants (Hymenoptera: Formicidae) from northeastern Mexico. Fla Entomol 93:501–504

    Article  Google Scholar 

  • Santos AV, Dillon RJ, Dillon VM, Reynolds SE, Samuels RI (2004) Occurrence of the antibiotic producing bacterium Burkholderia sp. in colonies of the leaf-cutting ant Atta sexdens rubropilosa. FEMS Microbiol Lett 33:319–323

    Article  Google Scholar 

  • Saravanakuma K, Kaviyarasan V (2010) Seasonal distribution of soil fungi and chemical properties of montane wet temperate forest types of Tamil Nadu. Afr J Plant Sci 4:190–196

    Google Scholar 

  • Schiøtt M, de Fine Licht HH, Lange L, Boomsma JJ (2008) Toward a molecular understanding of symbiont function: identification of a fungal gene for the degradation of xylan in the fungus gardens of leaf-cutting ants. BMC Microbiol 8:40

    Article  PubMed Central  PubMed  Google Scholar 

  • Schiøtt M, Rogowska-Wrzesinska A, Roepstorff JJB (2010) Leaf-cutting ant fungi produce cell wall degrading pectinase complexes reminiscent of phytopathogenic fungi. BMC Biol 8:156

    Article  PubMed Central  PubMed  Google Scholar 

  • Schultz TR, Brady SG (2008) Major evolutionary transitions in ant agriculture. Proc Natl Acad Sci USA 105:5435–5440

    Article  CAS  PubMed  Google Scholar 

  • Seal JN (2006) Self-organization and the superorganism: functional ecology of the obligate mutualism between a fungus gardening ant and its symbiotic fungus (Ph.D. dissertation). Tallahassee, Florida: Florida State University

  • Seal JN (2009) Scaling of body weight and fat content in fungus-gardening ant queens: does this explain why leaf-cutting ants found claustrally? Insect Soc 56:135–141

    Article  Google Scholar 

  • Seal JN, Tschinkel WR (2006) Colony productivity of the fungus-gardening ant, Trachymyrmex septentrionalis McCook, in a Florida pine forest (Hymenoptera: Formicidae). Ann Entomol Soc Am 99:673–682

    Article  Google Scholar 

  • Seal JN, Tschinkel WR (2007a) Co-evolution and the superorganism: switching cultivars does not alter the performance of fungus-gardening ant colonies. Funct Ecol 21:988–997

    Article  Google Scholar 

  • Seal JN, Tschinkel WR (2007b) Complexity in an obligate mutualism: do fungus-gardening ants know what makes their garden grow? Behav Ecol Sociobiol 61:1151–1160

    Article  Google Scholar 

  • Seal JN, Tschinkel WR (2007c) Energetics of newly mated queens and colony founding in the fungus-gardening ants Cyphomyrmex rimosus and Trachymyrmex septentrionalis (Hymenoptera: Formicidae). Physiol Entomol 32:8–15

    Article  Google Scholar 

  • Seal JN, Tschinkel WR (2008) Food limitation in the fungus-gardening ant, Trachymyrmex septentrionalis. Ecol Entomol 33:597–607

    Article  Google Scholar 

  • Seal JN, Tschinkel WR (2010) Distribution of the fungus-gardening ant, Trachymyrmex septentrionalis during and after a record drought. Insect Conserv Divers 3:134–142

    Article  Google Scholar 

  • Seal JN, Gus J, Mueller UG (2012) Fungus-gardening ants prefer native fungal species: do ants control their crops? Behav Ecol 23:1250–1256

    Article  Google Scholar 

  • Sen R, Ishak HD, Estrada D, Dowd SE, Hong E, Mueller UG (2009) Generalized antifungal activity and 454-screening of Pseudonocardia and Amycolatopsis bacteria in nests of fungus-growing ants. Proc Natl Acad Sci USA 106:17805–17810

    Article  CAS  PubMed  Google Scholar 

  • Sen R, Ishak H, Kniffin T, Mueller U (2010) Construction of chimaeric gardens through fungal intercropping: a symbiont choice experiment in the leafcutter ant Atta texana (Attini, Formicidae). Behav Ecol Sociobiol 64:1125–1133

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. W.H. Freeman and Co, New York

    Google Scholar 

  • Stradling DJ, Powell RJ (1986) The cloning of more highly productive fungal strains: a factor in the speciation of fungus growing ants. Experientia 42:962–964

    Google Scholar 

  • Underwood AJ (1997) Experiments in ecology. Cambridge University Press, Cambridge

    Google Scholar 

  • Waller DA (1989) Foraging behavior of Trachymyrmex turrifex wheeler (Formicidae: Attini). Southwest Nat 34:271–275

    Article  Google Scholar 

  • Weber NA (1956) Fungus-growing ants and their fungi: Trachymyrmex septentrionalis seminole. 37:197–199

    Google Scholar 

  • Weber NA (1972) Gardening ants: the attines. American Philosophical Society, Philadelphia

    Google Scholar 

  • White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M, Gelfand D, Sninsky J, White T (eds) PCR Protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Yek SH, Nash DR, Jensen A, Boomsma JJ (2012) Regulation and specificity of anti-fungal metapleural gland secretion in leaf-cutting ants. Proc R Soc Lond B Biol Sci 279:4215–4222

    Article  Google Scholar 

Download references

Acknowledgments

Constructive comments by the reviewers and editors greatly improved the manuscript. We also thank Andre Rodrigues for sharing his knowledge about attine-garden weeds; Walter Tschinkel for use of his laboratory; and John Crutchfield, Larry Gilbert, and Steven Gibson for facilitating the colony collections at Brackenridge Field Laboratory and at Stengl Lost Pines Field Station. The USDA Forest Service allowed us to collect colonies in the Apalachicola National Forest. Funding was provided by NSF award IOS-0920138 to JNS and UGM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon N. Seal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOC 2031 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seal, J.N., Mueller, U.G. Instability of novel ant-fungal associations constrains horizontal exchange of fungal symbionts. Evol Ecol 28, 157–176 (2014). https://doi.org/10.1007/s10682-013-9665-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-013-9665-8

Keywords