Evolutionary Ecology

, Volume 28, Issue 1, pp 177–191 | Cite as

Environmental confirmation of multiple ice age refugia for Pacific cod, Gadus macrocephalus

Original Paper

Abstract

The concept of species surviving through quaternary climatic extremes by retreating to glacial refugia, and then evolving genetically during re-population movements of the following interglacial, has been in the literature for over 40 years. Recently, advances in genetic analysis have enabled this concept to be validated and theories regarding population expansions and contractions to be built. For the major Northern Hemisphere species of cod, Gadus morhua (Atlantic cod) and Gadus macrocephalus (Pacific cod), genetic analysis has suggested retreat to separate refugia on both sides of their respective ocean basins during the last glacial period. Ecosystem niche modelling has previously confirmed that environmental conditions during the last glacial were compatible with the existence of these separate refugia for Atlantic cod. Here it is shown that such modelling also confirms a reduced core glacial distribution for G. macrocephalus, but probable refugia on either side of the Pacific. Existing mitochondrial DNA analyses suggest two separate glacial populations in the northwest Pacific, which modelling confirms, with predicted separate marine refugia in the land-locked Sea of Japan basin and the Sea of Okhotsk. Existing mitochondrial DNA for the northeast Pacific populations is less conclusive regarding whether there were one or two separate refugia off this coast, and their location. Using environmental niche models this study shows the glacial NE Pacific environment could support two marine refugia, one centred in the Aleutians/Gulf of Alaska and the other off British Columbia. The intervening Cordilleran Ice Sheet, and the glacially sub-aerial and ice-free Queen Charlotte Islands shelf, is hypothesised to have constrained exchange between glacial stocks either side of the Islands. The postulated southern marine refugium is off-shore from an established terrestrial refugium, suggesting greater dependence of species and ecosystems during environmental change. An earth system approach to evolutionary change could enhance understanding of past and future ecosystems.

Keywords

Pacific cod Ice-age refugia Modelling Genetics 

References

  1. Barrie JV, Conway KW (1999) Late Quaternary glaciations and postglacial stratigraphy of the northern Pacific margin of Canada. Quat Res 51:113–123CrossRefGoogle Scholar
  2. Bernarchez L (1997) Mitochondrial DNA analysis confirms the existence of two glacial races of rainbow smelt Osmerus mordax and their reproductive isolation in the St. Lawrence estuary (Quebec, Canada). Mol Ecol 6:73–83. doi:10.1046/j.1365-294X.1997.00156.x CrossRefGoogle Scholar
  3. Bigg GR, Cunningham CW, Ottersen G, Pogson G, Wadley MR, Williamson P (2008a) Ice-age survival of Atlantic cod: agreement between palaeoecology models and genetics. Proc R Soc B 275:163–172. doi:10.1098/rspb.2007.1153 PubMedCrossRefGoogle Scholar
  4. Bigg GR, Clark CD, Hughes ALC (2008b) A Last Glacial ice sheet on the Pacific Russian coast and catastrophic change arising from coupled ice-volcanic interaction. Earth Plan Sci Lett 265:559–570. doi:10.1016/j.epsl.2007.10.052 CrossRefGoogle Scholar
  5. Blanchard JL, Mills C, Jennings S, Fox CJ, Rackham BD, Eastwood P, O’Brien CM (2005) Distribution-abundance relationships for North Sea Atlantic cod (Gadus morhua): observation versus theory. Can J Fish Aquat Sci 62:2001–2009. doi:10.1139/F05-109 CrossRefGoogle Scholar
  6. Brander K (ed) (2005) Spawning and life history information for North Atlantic Cod stocks. ICES cooperative research report no. 274, Copenhagen, ICESGoogle Scholar
  7. Bucklin A, Wiebe P (1998) Low mitochondrial diversity and small effective population sizes of the copepods Calanus finmarchicus and Nannocalanus minor: possible impact of climatic variation during recent glaciations. J Hered 89:383–392. doi:10.1093/jhered/89.5.383 PubMedCrossRefGoogle Scholar
  8. Canino MF, Spies IB, Cunningham KM, Hauser L, Grant WS (2010) Multiple ice-age refugia in Pacific cod, Gadus macrocephalus. Mol Ecol 19:4339–4351. doi:10.1111/j.1365-294X.2010.04815.x CrossRefGoogle Scholar
  9. Carrera PE, Ager TA, Baichtal JF (2007) Possible refugia in the Alexander Archipelago of southeastern Alaska during the late Wisconsin glaciation. Can J Earth Sci 44:229–244. doi:10.1139/E06-081 CrossRefGoogle Scholar
  10. Dong B, Valdes PJ (1998) Simulations of the last glacial maximum climates using a general circulation model: prescribed versus computed sea surface temperatures. Clim Dyn 14:571–591. doi:10.1007/s003820050242 CrossRefGoogle Scholar
  11. Doyle MJ, Mier KL, Busby MS, Brodeur RD (2002) Regional variations in springtime ichthyoplankton assemblages in the northeast Pacific Ocean. Prog Oceanogr 53:247–282CrossRefGoogle Scholar
  12. Doyle MJ, Picquelle SJ, Mier KL, Spillane MC, Bond NA (2009) Larval fish abundance and physical forcing in the Gulf of Alaska, 1981–2003. Prog Oceanogr 80:163–187CrossRefGoogle Scholar
  13. Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loisell BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JMM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  14. Elith J, Phillips SJ, Hastie T, Dudik M, Chee YE, Yates CJ (2011) A statistical explanation of MAXENT for ecologists. Div Distrib 17:43–57. doi:10.1111.j.1472-4642.2010.00725.x CrossRefGoogle Scholar
  15. ETOPO (1986) Global 5′ × 5′ depth and elevation. ETOPO National Geophysical Data Center, NOAA, Boulder, ColoradoGoogle Scholar
  16. Fishbase (2012) Reviewed native distribution map for Gadus macrocephalus. www.aquamaps.org, version of August 2010. Accessed 5 Dec 2012
  17. Grant WS, Liu M, Gao TX, Yanagimoto T (2012) Limits of Bayesian skyline plot analysis of mtDNA sequences to infer historical demographies in Pacific herring (and other species). Mol Phylogenet Evol 65:203–212. doi:10.1016/j.ympev.2012.06.006 PubMedCrossRefGoogle Scholar
  18. Gwak WS, Nakayama K (2011) Genetic variation and population structure of the Pacific cod Gadus macrocephalus in Korean waters revealed by mtDNA and msDNA markers. Fish Sci 77:945–952. doi:10.1007/s12562-011-0403-2 CrossRefGoogle Scholar
  19. Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785. doi:10.1111/j.0906-7590.2006.04700.x CrossRefGoogle Scholar
  20. Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276. doi:10.1111/j.1095-8312.1996.tb01434.x Google Scholar
  21. Hickerson MJ, Ross JRP (2001) Post-glacial population history and genetic structure of the northern clingfish (Gobbiesox maeandricus), revealed from mtDNA analysis. Mar Biol 138:407–419. doi:10.1007/s002270000465 CrossRefGoogle Scholar
  22. Honda S, Oshima T, Nishimura A, Hattori T (2004) Movement of juvenile walleye Pollock, Theragra chalcogramma, from a spawning ground to a nursery ground along the Pacific coast of Hokkaido. Fish Oceanogr 13:84–98CrossRefGoogle Scholar
  23. Hurst TP, Moss JH, Miller JA (2012) Distributional patterns of 0-group Pacific cod (Gadus macrocephalus) in the eastern Bering Sea under variable recruitment and thermal conditions. ICES J Mar Sci 69:163–174. doi:10.1093/icesjms/fss011 CrossRefGoogle Scholar
  24. Karl SA, Toonen RJ, Grant WS (2012) Common misconceptions in molecular ecology: echoes of the modern synthesis. Mol Ecol 21:4171–4189. doi:10.1111/j.1365-294X.2012.05576.x PubMedCrossRefGoogle Scholar
  25. Kaschner K, Watson R, Trites A, Pauly D (2006) Mapping world-wide distributions of marine mammal species using a relative environmental suitability (RES) model. Mar Ecol Prog Ser 316:285–310. doi:10.3354/meps316285 CrossRefGoogle Scholar
  26. Kesner-Reyes K, Kaschner K, Kullander S, Garilao C, Baril J, Froese R (2012) Aquamaps: algorithm and data sources for aquatic organisms. In: Froese R, Pauly D (eds) Fishbase. www.fishbase.org, version (April 2012)
  27. Laurel BJ, Hurst TP, Copeman LA, Davis MW (2008) The role of temperature on the growth and survival of early and late hatching Pacific cod larvae (Gadus macrocephalus). J Plankton Res 9:1051–1060CrossRefGoogle Scholar
  28. Laurel BJ, Ryer CH, Knoth B, Stoner AW (2009) Temporal and ontogenetic shifts in habitat use of juvenile Pacific cod (Gadus macrocephalus). J Exp Mar Biol Ecol 377:28–35. doi:10.1016/j.jembe.2009.06.010 CrossRefGoogle Scholar
  29. Laurel BJ, Copeman LA, Hurst TP, Parrish CC (2010) The ecological significance of lipid/fatty acid synthesis in developing eggs and newly hatched larvae of Pacific cod (Gadus macrocephalus). Mar Biol 157:1713–1724. doi:10.1007/s00227-010-1445-1 CrossRefGoogle Scholar
  30. Levine RC, Bigg GR (2008) Sensitivity of the glacial ocean to Heinrich events from different iceberg sources, as modelled by a coupled atmosphere-iceberg-ocean model. Paleoceanography 23:PA4213. doi:10.1029/2008PA001613 CrossRefGoogle Scholar
  31. Levitus S, Boyer TP (1994) Salinity. World Atlas. NOAA NESDIS Atlas, Washington, DCGoogle Scholar
  32. Levitus S, Burgett R, Boyer TP (1994) Temperature. World Atlas. NOAA NESDIS Atlas, Washington, DCGoogle Scholar
  33. Lim DI, Kang S, Yoo HS, Jung HS, Choi JY, Kim HN, Shin IH (2006) Late Quaternary sediments on the outer shelf of the Korea Strait and their paleoceanographic implications. Geo Mar Lett 26:287–296. doi:10.1007/s00367-006-0039-x CrossRefGoogle Scholar
  34. Liu M, Lu ZC, Gao TX, Yanagimoto T, Sakurai Y (2010) Remarkably low mtDNA control-region diversity and shallow population structure in Pacific cod Gadus macrocephalus. J Fish Biol 77:1071–1081. doi:10.1111/j.1095-8649.2010.02743.x PubMedCrossRefGoogle Scholar
  35. Maggs CA, Castilho R, Foltz D, Henzler C, Jolly MT, Kelly J, Olsen J, Perez KE, Stam W, Vainola R, Viard F, Wares J (2008) Evaluating signatures of glacial refugia for North Atlantic benthic marine taxa. Ecology 89:S108–S122. doi:10.1890/08-0257.1 PubMedCrossRefGoogle Scholar
  36. Marko PB, Hoffman JM, Emme SA, Mcgovern TM, Keever CC, Cox LN (2010) The ‘expansion-contraction’ model of Pleistocene biogeography: rocky shores suffer a sea change? Mol Ecol 19:146–169. doi:10.1111/j.1365-294X.2009.04417.x PubMedCrossRefGoogle Scholar
  37. Narimatsu Y (2010) Temporal variability in reproductive traits and fluctuation in Pacific cod Gadus macrocephalus population. Bull Jap Soc Fish Oceanogr 74:27–34Google Scholar
  38. Park SC, Yoo DG, Lee CW, Lee EI (2000) Last glacial sea-level changes and paleogeography of the Korea (Tsushima) Strait. Geo Mar Lett 20:64–71CrossRefGoogle Scholar
  39. Patterson RT (1993) Late Quaternary benthic foraminiferal biofacies and paleoceanography of Queen Charlotte Sound and southern Hecate Strait, British Columbia. J Foram Res 23:1–18CrossRefGoogle Scholar
  40. Peltier WR (1994) Ice age paleotopography. Science 195:195–201. doi:10.1126/science.265.5169.195 CrossRefGoogle Scholar
  41. Peltier WR (2004) Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Ann Rev Earth Planet Sci 32:111–149CrossRefGoogle Scholar
  42. Pepin P, Orr D, Anderson J (1997) Time to hatch and larval size in relation to temperature and egg size in Atlantic cod (Gadus morhua). Can J Fish Aquat Sci 54(Suppl 1):2–10. doi:10.1139/cjfas-54-S1-2 CrossRefGoogle Scholar
  43. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modelling of species geographic distributions. Ecol Model 190:231–259. doi:10.1016/j.ecolmodel.2005.03.026 CrossRefGoogle Scholar
  44. Shafer ABA, Cullingham CI, Côté SD, Coltman DW (2010) Of glaciers and refugia: a decade of study sheds new light on the phylogeography of northwestern North America. Mol Ecol 19:4589–4621. doi:10.1111/j.1365-294X.2010.04828.x PubMedCrossRefGoogle Scholar
  45. Smith WG, Morse WW (1985) Retention of larval haddock Melanogrammus aeglefinus in the Georges Bank region, a gyre-influenced spawning area. Mar Ecol Prog Ser 24:1–13CrossRefGoogle Scholar
  46. Spies I (2012) Landscape genetics reveals population subdivision in Bering Sea and Aleutian Islands Pacific cod. Trans Am Fish Soc 141:1557–1573. doi:10.1080/00028487.2012.711265 CrossRefGoogle Scholar
  47. Stewart JR, Lister AM, Barnes I, Dalen L (2010) Refugia revisited: individualistic responses of species in space and time. Proc R Soc B 277:661–671. doi:10.1098/rspb.2009.1272 PubMedCrossRefGoogle Scholar
  48. Tyler AV, Crawford WR (1991) Modeling of recruitment patterns in Pacific cod (Gadus macrocephalus) in Hecate Strait, British Columbia. Can J Fish Aquat Sci 48:2240–2249CrossRefGoogle Scholar
  49. Varela S, Lobo JM, Hortal J (2011) Using species distribution models in paleobiogeography: a matter of data, predictors and concepts. Palaeogeogr Palaeoclim Palaeoecol 310:451–463. doi:10.1016/j.palaeo.2011.07.021 CrossRefGoogle Scholar
  50. Wadley MR, Bigg GR (1999) Implementation of variable time stepping in an ocean general circulation model. Ocean Model 1:71–80. doi:10.1016/S1463-5003(99)00011-6 CrossRefGoogle Scholar
  51. Wadley MR, Bigg GR (2002) Impact of flow through the Canadian Archipelago and Bering Strait on the North Atlantic and Arctic circulation: an ocean modelling study. Q J R Meteorol Soc 128:2187–2203. doi:10.1256/qj.00.35 CrossRefGoogle Scholar
  52. Wadley MR, Bigg GR, Rohling EJ, Payne AJ (2002) On modelling present-day and last glacial maximum oceanic δ18O distributions. Glob Planet Chang 32:89–109. doi:10.1016/S0921-8181(01)00084-4 CrossRefGoogle Scholar
  53. Wang LB, Yang SZ, Zhang RP, Fan DJ, Zhao MX, Hu BQ (2011) Sea surface temperature records of core ZY2 from the central mud area in the South Yellow Sea during last 6200 years and related effect of the Yellow Sea Warm Current. Chin Sci Bull 56:1588–1595. doi:10.1007/s11434-011-4442-y CrossRefGoogle Scholar
  54. Wares JP, Cuningham CW (2001) Phylogeography and historical ecology of the North Atlantic intertidal. Evol 55:2455–2469. doi:10.1554/0014-3820(2001)055[2455:PAHEOT]2.0.CO;2Google Scholar
  55. Warner BG, Mathewes RW, Clague JJ (1982) Ice-free conditions on the Queen-Charlotte Islands, British Columbia at the height of the Late Wisconsian glaciation. Science 218:675–677. doi:10.1126/science.218.4573.675 PubMedCrossRefGoogle Scholar
  56. Young AM, Torres C, Mack JE, Cunningham CW (2002) Morphological and genetic evidence for vicariance and refugium in Atlantic and Gulf of Mexico populations of the hermit crab Pagurus longicarpus. Mar Biol 140:1059–1066. doi:10.1007/s00227-002-0780-2 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of GeographyUniversity of SheffieldSheffieldUK

Personalised recommendations