Variation in contact zone dynamics between two species of topminnows, Fundulus notatus and F. olivaceus, across isolated drainage systems

Abstract

Spatially variable selection pressure within heterogeneous environments can result in the evolution of specialist phenotypes that facilitate co-occurrence of closely related species and limit genetic exchange. If divergent selection pressures maintain reproductive isolation, hybridization is expected to correlate with the strength of underlying ecological gradients and the traits shaped by adaptive processes. We sampled ten replicate topminnow (Fundulus olivaceus and Fundulus notatus) hybrid zones in isolated drainages throughout central and southern North America. In all drainages, species were distributed in an upstream–downstream manner with contact zones localized at confluences featuring abrupt shifts from tributary to river habitat. In two drainages, the typical up and downstream positions of species were reversed. Phenotype differences between the species reflect predicted selection differences along stream gradients. Downstream populations (lower food availability and greater predator pressure) generally showed larger investment in reproduction (higher gonadal somatic index), smaller body size and lower somatic condition compared to upstream populations. Phenotypic differences between the species in the two reversed drainages were consistent with convergence of life history traits in the respective habitats. Phenotypes of individuals of hybrid origin (F1 hybrids or backcrosses) were not significantly different from the average of the two parental forms, though there were trends towards reduced fitness. The prevalence of hybridization among drainages ranged from no hybrids in two drainages to near random mating. The strongest correlates of hybridization rate among replicate hybrid zones were similarity in body shape and the homogeneity of habitat through tributary-river confluences. The two reversed orientation hybrid zones also exhibited high prevalence of hybrids suggesting that phenotypic convergence could lead to increased hybridization.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Aboim MA, Mavárez J, Bernatchez L, Coelh MM (2010) Introgressive hybridization between two Iberian endemic cybrinid fish: a comparison between two independent hybrid zones. J Evol Biol 23:817–828

    CAS  PubMed  Article  Google Scholar 

  2. Alldredge P, Gutierrez M, Duvernell DD, Schaefer JF, Brunkow P, Matamoros W (2011) Variability in movement dynamics of topminnow (Fundulus notatus and F. olivaceus) populations. Ecol Fresh Fish 20:513–521

    Article  Google Scholar 

  3. Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160:1217–1229

    CAS  PubMed  Google Scholar 

  4. Barton NH (1989) Adaptation, speciation and hybrid zones. Nature 341:497–503

    CAS  PubMed  Article  Google Scholar 

  5. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2000) GENETIX 4.02, logiciel sous Windows TM pour la génétique des populations. Laboratoire génome, populations, interactions, CNRS UPR 9060, Université de Montpellier II, Montpellier, France

  6. Benda L, Poff NL, Miller D, Dunne T, Reeves G, Pess G, Pollock M (2004) The network dynamics hypothesis: how channel networks structure riverine habitats. Bioscience 54:413

    Article  Google Scholar 

  7. Berdan EL, Fuller RC (2012) A test for environmental effects on behavioral isolation in two species of killifish. Evolution 66:3224–3237

    PubMed  Article  Google Scholar 

  8. Black A, Howell WM (1978) A distinctive chromosomal race of the cyprinodontid fish, Fundulus notatus from the Upper Tombigbee River system of Alabama and Mississippi. Copeia 1978:280–288

    Article  Google Scholar 

  9. Blanchard TA (1996) Ovarian cycles and microhabitat use in two species of topminnows, Fundulus olivaceus and F. euryzonus, from the southeastern United States. Env Biol Fish 47:155–163

    Article  Google Scholar 

  10. Braasch ME, Smith PW (1965) Relationships of the topminnows Fundulus notatus and Fundulus olivaceus in the Upper Mississippi River Valley. Copeia 1965:46–53

    Article  Google Scholar 

  11. Bull CM (1991) Ecology of parapatric distributions. Ann Rev Ecol Syst 22:19–36

    Article  Google Scholar 

  12. Cooke GM, Chao NL, Beheregaray LB (2012) Divergent natural selection with gene flow along major environmental gradients in Amazonia: insights from genome scans, population genetics and phylogeography of the characin fish Triportheus albus. Mol Ecol 21:2410–2427

    PubMed  Article  Google Scholar 

  13. Culumber ZW, Fisher HS, Tobler M, Mateos M, Barber PH, Sorenson MD, Rosenthal GG (2011) Replicated hybrid zones of Xiphophorus swordtails along an elevational gradient. Mol Ecol 20:342–356

    CAS  PubMed  Article  Google Scholar 

  14. Culumber ZW, Shepard DB, Coleman SW, Rosenthal GG, Tobler M (2012) Physiological adaptation along environmental gradients and replicated hybrid zone structure of swordtails (Teleostei:Xiphophorus). J Evol Biol 25:1800–1814

    CAS  PubMed  Article  Google Scholar 

  15. Cummins KW (1962) An evaluation of some techniques for the collection and analysis of benthic samples with special emphasis on lotic waters. Am Mid Nat 67:477–504

    Article  Google Scholar 

  16. Duvernell DD, Schaefer JF, Hancks D, Fonoti J, Ravanelli AM (2007) Hybridization and introgression among syntopic populations of the topminnows Fundulus notatus and F. olivaceus. J Evol Biol 20:152–164

    CAS  PubMed  Article  Google Scholar 

  17. Duvernell DD, Meier S, Schaefer JF, Kreiser BR (2013) Contrasting phylogeographic histories between broadly sympatric topminnows in the Fundulus notatus species complex. Mol Phyl Evol (in review)

  18. Fuller RC, McGhee KE, Schrader M (2007) Speciation in killifish and the role of salt tolerance. J Evol Biol 20:1962–1975

    CAS  PubMed  Article  Google Scholar 

  19. Gorman OT (1986) Assemblage organization of stream fishes: the effect of rivers on adventitious streams. Am Nat 128:611–616

    Article  Google Scholar 

  20. Griffiths D (2010) Pattern and process in the distribution of North American freshwater fish. Biol J Linn Soc 100:46–61

    Article  Google Scholar 

  21. Hewitt GM (1988) Hybrid zones-natural laboratories for evolutionary studies. Trends Ecol Evol 3:158–167

    CAS  PubMed  Article  Google Scholar 

  22. Hitt NP, Angermeier PL, Hughes RH, Wang L, Seelbach PW (2006) Effects of adjacent streams on local fish assemblage structure in western Virginia: implications for biomonitoring. Am Fish Soc Symp 48:75–86

    Google Scholar 

  23. Howell WM, Black A (1981) Karyotypes in populations of the cyprinodontid fishes of the Fundulus notatus Species complex: a geographic analysis. Bul Al Mus Nat Hist 6:19–30

    Google Scholar 

  24. Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Let 7:1225–1241

    Article  Google Scholar 

  25. Langerhans RB (2008) Predictability of phenotypic differentiation across flow regimes in fishes. Integr Comp Biol 48:750–768

    PubMed  Article  Google Scholar 

  26. Langerhans RB, Layman CA, Shokrollahi A, DeWitt TJ (2004) Predator-driven phenotypic diversification in Gambusia affinis. Evolution 58:2305–2318

    PubMed  Google Scholar 

  27. McKinnon JS, Rundle HD (2002) Speciation in nature: the threespine stickleback model systems. Trends Ecol Evol 17:480–488

    Article  Google Scholar 

  28. McKinnon JS, Mori S, Blackman BK, David L, Kingsley DM, Jamieson L, Chou J, Schluter D (2004) Evidence for ecology’s role in speciation. Nature 429:294–298

    CAS  PubMed  Article  Google Scholar 

  29. Osborne LL, Wiley MJ (1992) Influence of tributary spatial position on the structure of warmwater fish communities. Can J Fish Aq Sci 49:671–681

    Article  Google Scholar 

  30. Pritchard JR, Schluter D (2001) Declining interspecific competition during character displacement: summoning the ghost of competition past. Evol Ecol Res 3:209–220

    Google Scholar 

  31. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  32. Reifová R, Reif J, Antczak M, Nachman MW (2011) Ecological character displacement in the face of gene flow: evidence from two species of nightingales. BMC Evol Biol 11:138

    PubMed Central  PubMed  Article  Google Scholar 

  33. Reznick DN, Bryga HA (1996) Life-history evolution in guppies (Poecilia reticulata: Poeciliidae). v. genetic basis of parallelism in life histories. Am Nat 147:339–359

    Article  Google Scholar 

  34. Reznick D, Endler JA (1982) The impact of predation on life history evolution in Trinidadian guppies (Poecilia reticulata). Evolution 36:160–177

    Article  Google Scholar 

  35. Reznick DN, Byrga HA, Endler JA (1990) Experimentally induced life-history evolution in a natural population. Nature 346:357–359

    Article  Google Scholar 

  36. Rice SP, Greenwood MT, Joyce CB (2001) Tributaries, sediment sources, and the longitudinal organization of macroinvertebrate fauna along river systems. Can J Fish Aq Sci 58:824–840

    Article  Google Scholar 

  37. Schaefer JF (2012) Hatch success and temperature dependent development time in two broadly distributed topminnows (Fundulidae). Naturwissenschaften 99:591–595

    CAS  PubMed  Article  Google Scholar 

  38. Schaefer JF, Kerfoot JR (2004) Fish assemblage dynamics in an adventitious stream: a landscape perspective. Am Mid Nat 151:134–145

    Article  Google Scholar 

  39. Schaefer J, Walters A (2010) Metabolic cold adaptation and developmental plasticity in metabolic rates among species in the Fundulus notatus species complex. Func Ecol 24:1087–1094

    Article  Google Scholar 

  40. Schaefer J, Kreiser BK, Champagne C, Mickle PM, Duvernell DD (2009) Patterns of co-existence and hybridization among two topminnows (Fundulus euryzonus and F. olivaceus) in a riverine contact zone. Ecol Fresh Fish 18:360–368

    Article  Google Scholar 

  41. Schaefer JF, Duvernell DD, Kreiser BR (2011a) Ecological and genetic assessment of spatial structure among replicate contact zones between two topminnow species. Evol Ecol 24:1145–1161

    Article  Google Scholar 

  42. Schaefer J, Duvernell DD, Kreiser BR (2011b) Shape variability in topminnows (Fundulus notatus species complex) along the river continuum. Biol J Linn Soc 103:612–621

    Article  Google Scholar 

  43. Schluter D (2009) Evidence for ecological speciation and its alternative. Science 323:737–741

    CAS  PubMed  Article  Google Scholar 

  44. Schluter D, Conte GL (2009) Genetics and ecological speciation. Proc Nat Acad Sci 106:9955–9962

    CAS  PubMed  Article  Google Scholar 

  45. Schluter D, McPhail JD (1992) Ecological character displacement and speciation in sticklebacks. Am Nat 140:85–108

    CAS  PubMed  Article  Google Scholar 

  46. Seehausen O, Takimoto G, Roy D, Jokela J (2008) Speciation reversal and biodiversity dynamics with hybridization in changing environments. Mol Ecol 17:30–44

    PubMed  Article  Google Scholar 

  47. Setzer P (1970) An analysis of a natural hybrid swarm by means of chromosome morphology. Trans Am Fish Soc 99:139–146

    Article  Google Scholar 

  48. Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zoo 69:82–90

    CAS  Article  Google Scholar 

  49. Smithson EB, Johnson CE (1999) Movement patterns of stream fishes in a Ouachita highlands stream: an examination of the restricted movement paradigm. Trans Am Fish Soc 128:847–853

    Article  Google Scholar 

  50. Stelkens RB, Seehausen O (2009) Phenotypic divergence but not genetic distance predicts assortative mating among species of a cichlid fish radiation. J Evol Biol 22:1679–1694

    CAS  PubMed  Article  Google Scholar 

  51. Strahler AN (1957) Quantitative analysis of watershed geomorphology. Trans Am Geo Un 38:913–920

    Article  Google Scholar 

  52. Sutton SG, Bult TP, Haedrich RL (2000) Relationships among fat weight, body weight, water weight, and condition factors in wild Atlantic salmon parr. Trans Am Fish Soc 129:527–538

    Article  Google Scholar 

  53. Swenson NG, Howard DJ (2005) Clustering of contact zones, hybrid zones, and phylogeographic breaks in North America. Am Nat 166:581–591

    PubMed  Article  Google Scholar 

  54. Thomerson JE (1966) A comparative biosystematic study of Fundulus notatus and Fundulus olivaceous (Pices: Cyprinodontidae). Tul Stud Zool 13:29–47

    Google Scholar 

  55. Thomerson JE, Woolridge DP (1970) Food habits of allotopic and syntopic populations of the topminnows Fundulus olivaceus and Fundulus notatus. Am Mid Nat 84:573–576

    Article  Google Scholar 

  56. Tipton JA, Bart HL, Piller KL (2004) Geomorphic disturbance and its impact on darter (Teleostomi: Percidae) distribution and abundance in the Pearl River drainage, Mississippi. Hydrobiologia 527:49–61

    Article  Google Scholar 

  57. Tobler M, DeWitt TJ, Schlupp I, García de León FJ, Herrmann R, Feulner PGD, Tiedmann R, Plath M (2008) Toxic hydrogen sulfide and dark caves: phenotypic and genetic divergence across two environmental gradients. Evolution 62:2643–2659

    PubMed  Article  Google Scholar 

  58. Vaha J, Primmer CR (2006) Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol Ecol 15:63–72

    CAS  PubMed  Article  Google Scholar 

  59. Vamosi SM, Heard SB, Vamosi JC, Webb CO (2008) Emerging patterns in the comparative analysis of phylogenetic community structure. Mol Ecol 18:572–592

    PubMed  Article  Google Scholar 

  60. Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aqua Sci 37:130–137

    Article  Google Scholar 

  61. Vigueira P, Schaefer JF, Duvernell DD, Kreiser BR (2008) Tests of reproductive isolation among species in the Fundulus notatus (Cyprinodontiformes: Fundulidae) species complex. Evol Ecol 22:55–70

    Article  Google Scholar 

  62. Vines TH, Schluter D (2006) Strong assortative mating between allopatric sticklebacks as a by-product of adaptation to different environments. Proc R Soc B 273:911–916

    PubMed  Article  Google Scholar 

  63. Ward JL, Blum MJ (2012) Exposure to an environmental estrogen breaks down sexual isolation between native and invasive species. Evol App 5:901–912

    CAS  Article  Google Scholar 

  64. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  65. Wiley EO, Mayden RL (1985) Species and speciation in phylogenetic systematics, with examples from the North American fish fauna. Ann Mo Bot Gar 72:596–635

    Article  Google Scholar 

  66. Winemiller KO, Rose KA (1992) Patterns of life-history diversification in North American fishes: implications for population regulation. Can J Fish Aqua Sci 49:2196–2218

    Article  Google Scholar 

Download references

Acknowledgments

We thank B. Kreiser, C. Champagne, P. Mickle, S. Clark, B. Schmidt, M. Gutierrez, B. Knittel, J. Westerfield, K. Woods, J. Scott, P. Farrow, N. Green, M. Johns, J. Curry, D. McGinnie, M. Stasik, A. Stevenson, N. Anciulis, M. Hurt, A. Gafford, J. Einhorn, W. Vogel, M. Miller, P. Alldredge, B. Schoeneck, and M. Jablonski for assistance with field collections and laboratory work. Funding provided by the National Science Foundation (DEB # 0716985).

Author information

Affiliations

Authors

Corresponding author

Correspondence to David D. Duvernell.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Duvernell, D.D., Schaefer, J.F. Variation in contact zone dynamics between two species of topminnows, Fundulus notatus and F. olivaceus, across isolated drainage systems. Evol Ecol 28, 37–53 (2014). https://doi.org/10.1007/s10682-013-9653-z

Download citation

Keywords

  • Hybrid zone
  • Reproductive isolation
  • Ecological gradient
  • River continuum
  • Convergence
  • Fitness