Skip to main content

Advertisement

Log in

Variation in contact zone dynamics between two species of topminnows, Fundulus notatus and F. olivaceus, across isolated drainage systems

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Spatially variable selection pressure within heterogeneous environments can result in the evolution of specialist phenotypes that facilitate co-occurrence of closely related species and limit genetic exchange. If divergent selection pressures maintain reproductive isolation, hybridization is expected to correlate with the strength of underlying ecological gradients and the traits shaped by adaptive processes. We sampled ten replicate topminnow (Fundulus olivaceus and Fundulus notatus) hybrid zones in isolated drainages throughout central and southern North America. In all drainages, species were distributed in an upstream–downstream manner with contact zones localized at confluences featuring abrupt shifts from tributary to river habitat. In two drainages, the typical up and downstream positions of species were reversed. Phenotype differences between the species reflect predicted selection differences along stream gradients. Downstream populations (lower food availability and greater predator pressure) generally showed larger investment in reproduction (higher gonadal somatic index), smaller body size and lower somatic condition compared to upstream populations. Phenotypic differences between the species in the two reversed drainages were consistent with convergence of life history traits in the respective habitats. Phenotypes of individuals of hybrid origin (F1 hybrids or backcrosses) were not significantly different from the average of the two parental forms, though there were trends towards reduced fitness. The prevalence of hybridization among drainages ranged from no hybrids in two drainages to near random mating. The strongest correlates of hybridization rate among replicate hybrid zones were similarity in body shape and the homogeneity of habitat through tributary-river confluences. The two reversed orientation hybrid zones also exhibited high prevalence of hybrids suggesting that phenotypic convergence could lead to increased hybridization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aboim MA, Mavárez J, Bernatchez L, Coelh MM (2010) Introgressive hybridization between two Iberian endemic cybrinid fish: a comparison between two independent hybrid zones. J Evol Biol 23:817–828

    Article  CAS  PubMed  Google Scholar 

  • Alldredge P, Gutierrez M, Duvernell DD, Schaefer JF, Brunkow P, Matamoros W (2011) Variability in movement dynamics of topminnow (Fundulus notatus and F. olivaceus) populations. Ecol Fresh Fish 20:513–521

    Article  Google Scholar 

  • Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160:1217–1229

    CAS  PubMed  Google Scholar 

  • Barton NH (1989) Adaptation, speciation and hybrid zones. Nature 341:497–503

    Article  CAS  PubMed  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2000) GENETIX 4.02, logiciel sous Windows TM pour la génétique des populations. Laboratoire génome, populations, interactions, CNRS UPR 9060, Université de Montpellier II, Montpellier, France

  • Benda L, Poff NL, Miller D, Dunne T, Reeves G, Pess G, Pollock M (2004) The network dynamics hypothesis: how channel networks structure riverine habitats. Bioscience 54:413

    Article  Google Scholar 

  • Berdan EL, Fuller RC (2012) A test for environmental effects on behavioral isolation in two species of killifish. Evolution 66:3224–3237

    Article  PubMed  Google Scholar 

  • Black A, Howell WM (1978) A distinctive chromosomal race of the cyprinodontid fish, Fundulus notatus from the Upper Tombigbee River system of Alabama and Mississippi. Copeia 1978:280–288

    Article  Google Scholar 

  • Blanchard TA (1996) Ovarian cycles and microhabitat use in two species of topminnows, Fundulus olivaceus and F. euryzonus, from the southeastern United States. Env Biol Fish 47:155–163

    Article  Google Scholar 

  • Braasch ME, Smith PW (1965) Relationships of the topminnows Fundulus notatus and Fundulus olivaceus in the Upper Mississippi River Valley. Copeia 1965:46–53

    Article  Google Scholar 

  • Bull CM (1991) Ecology of parapatric distributions. Ann Rev Ecol Syst 22:19–36

    Article  Google Scholar 

  • Cooke GM, Chao NL, Beheregaray LB (2012) Divergent natural selection with gene flow along major environmental gradients in Amazonia: insights from genome scans, population genetics and phylogeography of the characin fish Triportheus albus. Mol Ecol 21:2410–2427

    Article  PubMed  Google Scholar 

  • Culumber ZW, Fisher HS, Tobler M, Mateos M, Barber PH, Sorenson MD, Rosenthal GG (2011) Replicated hybrid zones of Xiphophorus swordtails along an elevational gradient. Mol Ecol 20:342–356

    Article  CAS  PubMed  Google Scholar 

  • Culumber ZW, Shepard DB, Coleman SW, Rosenthal GG, Tobler M (2012) Physiological adaptation along environmental gradients and replicated hybrid zone structure of swordtails (Teleostei:Xiphophorus). J Evol Biol 25:1800–1814

    Article  CAS  PubMed  Google Scholar 

  • Cummins KW (1962) An evaluation of some techniques for the collection and analysis of benthic samples with special emphasis on lotic waters. Am Mid Nat 67:477–504

    Article  Google Scholar 

  • Duvernell DD, Schaefer JF, Hancks D, Fonoti J, Ravanelli AM (2007) Hybridization and introgression among syntopic populations of the topminnows Fundulus notatus and F. olivaceus. J Evol Biol 20:152–164

    Article  CAS  PubMed  Google Scholar 

  • Duvernell DD, Meier S, Schaefer JF, Kreiser BR (2013) Contrasting phylogeographic histories between broadly sympatric topminnows in the Fundulus notatus species complex. Mol Phyl Evol (in review)

  • Fuller RC, McGhee KE, Schrader M (2007) Speciation in killifish and the role of salt tolerance. J Evol Biol 20:1962–1975

    Article  CAS  PubMed  Google Scholar 

  • Gorman OT (1986) Assemblage organization of stream fishes: the effect of rivers on adventitious streams. Am Nat 128:611–616

    Article  Google Scholar 

  • Griffiths D (2010) Pattern and process in the distribution of North American freshwater fish. Biol J Linn Soc 100:46–61

    Article  Google Scholar 

  • Hewitt GM (1988) Hybrid zones-natural laboratories for evolutionary studies. Trends Ecol Evol 3:158–167

    Article  CAS  PubMed  Google Scholar 

  • Hitt NP, Angermeier PL, Hughes RH, Wang L, Seelbach PW (2006) Effects of adjacent streams on local fish assemblage structure in western Virginia: implications for biomonitoring. Am Fish Soc Symp 48:75–86

    Google Scholar 

  • Howell WM, Black A (1981) Karyotypes in populations of the cyprinodontid fishes of the Fundulus notatus Species complex: a geographic analysis. Bul Al Mus Nat Hist 6:19–30

    Google Scholar 

  • Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Let 7:1225–1241

    Article  Google Scholar 

  • Langerhans RB (2008) Predictability of phenotypic differentiation across flow regimes in fishes. Integr Comp Biol 48:750–768

    Article  PubMed  Google Scholar 

  • Langerhans RB, Layman CA, Shokrollahi A, DeWitt TJ (2004) Predator-driven phenotypic diversification in Gambusia affinis. Evolution 58:2305–2318

    PubMed  Google Scholar 

  • McKinnon JS, Rundle HD (2002) Speciation in nature: the threespine stickleback model systems. Trends Ecol Evol 17:480–488

    Article  Google Scholar 

  • McKinnon JS, Mori S, Blackman BK, David L, Kingsley DM, Jamieson L, Chou J, Schluter D (2004) Evidence for ecology’s role in speciation. Nature 429:294–298

    Article  CAS  PubMed  Google Scholar 

  • Osborne LL, Wiley MJ (1992) Influence of tributary spatial position on the structure of warmwater fish communities. Can J Fish Aq Sci 49:671–681

    Article  Google Scholar 

  • Pritchard JR, Schluter D (2001) Declining interspecific competition during character displacement: summoning the ghost of competition past. Evol Ecol Res 3:209–220

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  • Reifová R, Reif J, Antczak M, Nachman MW (2011) Ecological character displacement in the face of gene flow: evidence from two species of nightingales. BMC Evol Biol 11:138

    Article  PubMed Central  PubMed  Google Scholar 

  • Reznick DN, Bryga HA (1996) Life-history evolution in guppies (Poecilia reticulata: Poeciliidae). v. genetic basis of parallelism in life histories. Am Nat 147:339–359

    Article  Google Scholar 

  • Reznick D, Endler JA (1982) The impact of predation on life history evolution in Trinidadian guppies (Poecilia reticulata). Evolution 36:160–177

    Article  Google Scholar 

  • Reznick DN, Byrga HA, Endler JA (1990) Experimentally induced life-history evolution in a natural population. Nature 346:357–359

    Article  Google Scholar 

  • Rice SP, Greenwood MT, Joyce CB (2001) Tributaries, sediment sources, and the longitudinal organization of macroinvertebrate fauna along river systems. Can J Fish Aq Sci 58:824–840

    Article  Google Scholar 

  • Schaefer JF (2012) Hatch success and temperature dependent development time in two broadly distributed topminnows (Fundulidae). Naturwissenschaften 99:591–595

    Article  CAS  PubMed  Google Scholar 

  • Schaefer JF, Kerfoot JR (2004) Fish assemblage dynamics in an adventitious stream: a landscape perspective. Am Mid Nat 151:134–145

    Article  Google Scholar 

  • Schaefer J, Walters A (2010) Metabolic cold adaptation and developmental plasticity in metabolic rates among species in the Fundulus notatus species complex. Func Ecol 24:1087–1094

    Article  Google Scholar 

  • Schaefer J, Kreiser BK, Champagne C, Mickle PM, Duvernell DD (2009) Patterns of co-existence and hybridization among two topminnows (Fundulus euryzonus and F. olivaceus) in a riverine contact zone. Ecol Fresh Fish 18:360–368

    Article  Google Scholar 

  • Schaefer JF, Duvernell DD, Kreiser BR (2011a) Ecological and genetic assessment of spatial structure among replicate contact zones between two topminnow species. Evol Ecol 24:1145–1161

    Article  Google Scholar 

  • Schaefer J, Duvernell DD, Kreiser BR (2011b) Shape variability in topminnows (Fundulus notatus species complex) along the river continuum. Biol J Linn Soc 103:612–621

    Article  Google Scholar 

  • Schluter D (2009) Evidence for ecological speciation and its alternative. Science 323:737–741

    Article  CAS  PubMed  Google Scholar 

  • Schluter D, Conte GL (2009) Genetics and ecological speciation. Proc Nat Acad Sci 106:9955–9962

    Article  CAS  PubMed  Google Scholar 

  • Schluter D, McPhail JD (1992) Ecological character displacement and speciation in sticklebacks. Am Nat 140:85–108

    Article  CAS  PubMed  Google Scholar 

  • Seehausen O, Takimoto G, Roy D, Jokela J (2008) Speciation reversal and biodiversity dynamics with hybridization in changing environments. Mol Ecol 17:30–44

    Article  PubMed  Google Scholar 

  • Setzer P (1970) An analysis of a natural hybrid swarm by means of chromosome morphology. Trans Am Fish Soc 99:139–146

    Article  Google Scholar 

  • Seutin G, White BN, Boag PT (1991) Preservation of avian blood and tissue samples for DNA analyses. Can J Zoo 69:82–90

    Article  CAS  Google Scholar 

  • Smithson EB, Johnson CE (1999) Movement patterns of stream fishes in a Ouachita highlands stream: an examination of the restricted movement paradigm. Trans Am Fish Soc 128:847–853

    Article  Google Scholar 

  • Stelkens RB, Seehausen O (2009) Phenotypic divergence but not genetic distance predicts assortative mating among species of a cichlid fish radiation. J Evol Biol 22:1679–1694

    Article  CAS  PubMed  Google Scholar 

  • Strahler AN (1957) Quantitative analysis of watershed geomorphology. Trans Am Geo Un 38:913–920

    Article  Google Scholar 

  • Sutton SG, Bult TP, Haedrich RL (2000) Relationships among fat weight, body weight, water weight, and condition factors in wild Atlantic salmon parr. Trans Am Fish Soc 129:527–538

    Article  Google Scholar 

  • Swenson NG, Howard DJ (2005) Clustering of contact zones, hybrid zones, and phylogeographic breaks in North America. Am Nat 166:581–591

    Article  PubMed  Google Scholar 

  • Thomerson JE (1966) A comparative biosystematic study of Fundulus notatus and Fundulus olivaceous (Pices: Cyprinodontidae). Tul Stud Zool 13:29–47

    Google Scholar 

  • Thomerson JE, Woolridge DP (1970) Food habits of allotopic and syntopic populations of the topminnows Fundulus olivaceus and Fundulus notatus. Am Mid Nat 84:573–576

    Article  Google Scholar 

  • Tipton JA, Bart HL, Piller KL (2004) Geomorphic disturbance and its impact on darter (Teleostomi: Percidae) distribution and abundance in the Pearl River drainage, Mississippi. Hydrobiologia 527:49–61

    Article  Google Scholar 

  • Tobler M, DeWitt TJ, Schlupp I, García de León FJ, Herrmann R, Feulner PGD, Tiedmann R, Plath M (2008) Toxic hydrogen sulfide and dark caves: phenotypic and genetic divergence across two environmental gradients. Evolution 62:2643–2659

    Article  PubMed  Google Scholar 

  • Vaha J, Primmer CR (2006) Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol Ecol 15:63–72

    Article  CAS  PubMed  Google Scholar 

  • Vamosi SM, Heard SB, Vamosi JC, Webb CO (2008) Emerging patterns in the comparative analysis of phylogenetic community structure. Mol Ecol 18:572–592

    Article  PubMed  Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aqua Sci 37:130–137

    Article  Google Scholar 

  • Vigueira P, Schaefer JF, Duvernell DD, Kreiser BR (2008) Tests of reproductive isolation among species in the Fundulus notatus (Cyprinodontiformes: Fundulidae) species complex. Evol Ecol 22:55–70

    Article  Google Scholar 

  • Vines TH, Schluter D (2006) Strong assortative mating between allopatric sticklebacks as a by-product of adaptation to different environments. Proc R Soc B 273:911–916

    Article  PubMed  Google Scholar 

  • Ward JL, Blum MJ (2012) Exposure to an environmental estrogen breaks down sexual isolation between native and invasive species. Evol App 5:901–912

    Article  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wiley EO, Mayden RL (1985) Species and speciation in phylogenetic systematics, with examples from the North American fish fauna. Ann Mo Bot Gar 72:596–635

    Article  Google Scholar 

  • Winemiller KO, Rose KA (1992) Patterns of life-history diversification in North American fishes: implications for population regulation. Can J Fish Aqua Sci 49:2196–2218

    Article  Google Scholar 

Download references

Acknowledgments

We thank B. Kreiser, C. Champagne, P. Mickle, S. Clark, B. Schmidt, M. Gutierrez, B. Knittel, J. Westerfield, K. Woods, J. Scott, P. Farrow, N. Green, M. Johns, J. Curry, D. McGinnie, M. Stasik, A. Stevenson, N. Anciulis, M. Hurt, A. Gafford, J. Einhorn, W. Vogel, M. Miller, P. Alldredge, B. Schoeneck, and M. Jablonski for assistance with field collections and laboratory work. Funding provided by the National Science Foundation (DEB # 0716985).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David D. Duvernell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duvernell, D.D., Schaefer, J.F. Variation in contact zone dynamics between two species of topminnows, Fundulus notatus and F. olivaceus, across isolated drainage systems. Evol Ecol 28, 37–53 (2014). https://doi.org/10.1007/s10682-013-9653-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-013-9653-z

Keywords

Navigation