The origin of terrestrial isopods (Crustacea: Isopoda: Oniscidea)

Abstract

Living isopods of the suborder Oniscidea (commonly called woodlice) are the only group of Crustacea almost entirely composed of terrestrial forms. Furthermore, woodlice are completely independent from the aquatic environment from which they originally arose. From marine ancestors, woodlice are a key taxon to study the conquest of the land among arthropods because of their interesting gradation of morphological, physiological and behavioral adaptations for terrestriality. However, the origin and evolution of this model group are still poorly known. Herein, we provide a synthesis of the oniscidean fossil record to replace this group in a deep-time context. Because members of the Oniscidea are difficult to fossilize, their fossil record alone is undoubtedly fragmentary and not representative of their complete evolutionary history, but it maintains an important relevance by providing reference points. To date, the first attested occurrences of Oniscidea are recorded from the Early Cretaceous. At this time, woodlice were already widely distributed (from Western Europe to Eastern Asia) with several species. By evaluating phylogenetic studies, palaeobiogeographic context of fossil specimens and current biological considerations, we discuss and support a pre-Pangaean origin of the Oniscidea, in the Late Paleozoic—most likely during the Carboniferous.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Almond JE (1985) The Silurian-Devonian fossil record of the Myriapoda. Phil Trans R Soc Lond B 309:227–237

    Google Scholar 

  2. Alonso J, Arillo A, Barrón E et al (2000) A new fossil resin with biological inclusions in lower Cretaceous deposits from Álava (Northern Spain, Basque-Cantabrian Basin). J Paleontol 74(1):158–178

    Google Scholar 

  3. Basso D, Tintori A (1994) New Triassic isopod crustaceans from Northern Italy. Palaeontology 37(4):801–810

    Google Scholar 

  4. Bennett CE (2008) A review of the Carboniferous colonisation of non-marine environments by ostracods. Senckenb Lethaea 88:37–46

    Google Scholar 

  5. Berner RA, Beerling DJ, Dudley R et al (2003) Phanerozoic atmospheric oxygen. Annu Rev Earth Planet Sci 31:105–134

    CAS  Google Scholar 

  6. Blakey R (2012) Global paleogeography. Northern Arizona University Geology. Available from http://jan.ucc.nau.edu/ (accessed June 2012)

  7. Brusca RC (1984) Phylogeny, evolution and biogeography of the marine isopod subfamily Idoteinae (Crustacea: Isopoda: Idoteidae). Trans San Diego Soc Nat Hist 20(7):99–134

    Google Scholar 

  8. Brusca RC, Wilson GDF (1991) A phylogenetic analysis of the Isopoda with some classificatory recommendations. Mem Qld Mus 31:143–204

    Google Scholar 

  9. Carefoot TH, Taylor BE (1995) Ligia: a prototypal terrestrial isopod. In: Alikhan AM (ed) Terrestrial isopod biology. Balkema, Rotterdam, pp 47–60

    Google Scholar 

  10. Carpenter GH, Swain I (1908) A new Devonian isopod from Kiltorcan, County Kilkenny. P Roy Irish Acad B 27:61–67

    Google Scholar 

  11. Chen JY, Vannier J, Huang DY (2001) The origin of crustaceans: new evidence from the Early Cambrian of China. Proc R Soc Lond B 268:2181–2187

    CAS  Google Scholar 

  12. Cloudsley-Thompson JL (1988) Evolution and adaptation of terrestrial arthropods. Springer, Berlin

    Google Scholar 

  13. David JF, Handa IT (2010) The ecology of saprophagous macroarthropods (millipedes, woodlice) in the context of global change. Biol Rev 85:881–895

    PubMed  Google Scholar 

  14. Davis RC (1984) Effects of weather and habitat structure on the population dynamics of isopods in a dune grassland. Oikos 42(3):387–395

    Google Scholar 

  15. Delclòs X, Arillo A, Peñalver E et al (2007) Fossiliferous amber deposits from the Cretaceous (Albian) of Spain. C R Palevol 6:135–149

    Google Scholar 

  16. Dunlop JA (2010) Bitterfeld Amber. In: Penney D (ed) Biodiversity of fossils in amber from the major world deposits. Siri Scientific Press, Manchester, pp 57–68

    Google Scholar 

  17. Edney E (1954) Woodlice and the land habitat. Biol Rev 29(2):185–219

    Google Scholar 

  18. Edney E (1968) Transition from water to land in isopod crustaceans. Am Zool 8(3):309–326

    Google Scholar 

  19. Erhard F (1998) Phylogenetic relationships within the Oniscidea (Crustacea, Isopoda). Isr J Zool 44:303–309

    Google Scholar 

  20. Friend JA, Richardson AMM (1986) Biology of terrestrial amphipods. Annu Rev Entomol 31:25–48

    Google Scholar 

  21. Gaillard C, Hantzpergue P, Vannier J et al (2005) Isopod trackways from the Crayssac Lagerstätte, Upper Jurassic, France. Palaeontology 48(5):947–962

    Google Scholar 

  22. Garwood RJ, Edgecombe GD (2011) Early terrestrial animals, evolution, and uncertainty. Evol Educ Outreach 4(3):489–501

    Google Scholar 

  23. Garwood RJ, Sutton MD (2012) The enigmatic arthropod Camptophyllia. Palaeontol Electron 2: 15A (12p)

  24. Gill EL (1924) Fossil arthropods from the Tyne Coalfield. Geol Mag 61:455–471

    Google Scholar 

  25. Girard V, Schmidt AR, Saint Martin S et al (2008) Evidence for marine microfossils from amber. PNAS 105(45):17426–17429

    PubMed  CAS  Google Scholar 

  26. Girling MA (1979) C.cium carbonate-replaced arthropods from archaeological deposits. J Archaeol Sci 6(4):309–320

    CAS  Google Scholar 

  27. Glenner H, Thomsen PF, Hebsgaard MB et al (2006) The origin of insects. Science 314:1883–1884

    PubMed  CAS  Google Scholar 

  28. Golonka J, Ford D (2000) Pangean (Late Carboniferous–Middle Jurassic) paleoenvironment and lithofacies. Palaeogeogr Palaeoclimatol Palaeoecol 161:1–34

    Google Scholar 

  29. Gongalsky KB, Savin FA, Pokarzhevskii AD et al (2005) Spatial distribution of isopods in an oak–beech forest. Eur J Soil Biol 41:117–122

    Google Scholar 

  30. Gradstein FM, Ogg JG, Schmitz M, Ogg G (2012) The geologic time scale 2012. Elsevier, Amsterdam

    Google Scholar 

  31. Graham JB, Dudley R, Aguilar NM, Gans C (1995) Implications of the late Palaeozoic oxygen pulse for physiology and evolution. Nature 375:117–120

    CAS  Google Scholar 

  32. Greb SF, DiMichele WA, Gastaldo RA (2006) Evolution of wetland types and the importance of wetlands in earth history. In: Greb SF, DiMichele WA (eds) Wetlands through time. Geol Soc Amer Spec Paper, vol 399, pp 1–40

  33. Grimaldi DA (2010) 400 million years on six legs: on the origin and early evolution of Hexapoda. Arthropod Struct Dev 39:191–203

    PubMed  Google Scholar 

  34. Grimaldi D, Engel MS (2005) Evolution of the insects. Cambridge University Press, USA

    Google Scholar 

  35. Hadley NF, Quinlan MC (1984) Cuticular transpiration in the isopod Porcellio laevis: chemical and morphological factors involved in its control. Symp Zool Soc Lond 53:97–108

    Google Scholar 

  36. Harrison JF, Kaiser A, VandenBrooks JM (2010) Atmospheric oxygen level and the evolution of insect body size. Proc R Soc B 277:1937–1946

    PubMed  Google Scholar 

  37. Harvey THP, Vélez MI, Butterfield NJ (2012) Exceptionally preserved crustaceans from western Canada reveal a cryptic Cambrian radiation. PNAS 109(5):1589–1594

    PubMed  CAS  Google Scholar 

  38. Heer O (1865) Die Urwelt der Schweiz. Schulthess F, Zürich

    Google Scholar 

  39. Hegna TA, Lazo-Wasem EA (2010) Branchinecta brushi n. sp. (Branchiopoda: Anostraca: Branchinectidae) from a volcanic crater in northern Chile (Antofagasta Province): a new altitude record for crustaceans. J Crust Biol 30(3):445–464

    Google Scholar 

  40. Hild S, Marti O, Ziegler A (2008) Spatial distribution of calcite and amorphous calcium carbonate in the cuticle of the terrestrial crustaceans Porcellio scaber and Armadillidium vulgare. J Struct Biol 163(1):100–108

    PubMed  CAS  Google Scholar 

  41. Hornung E (2011) Evolutionary adaptation of oniscidean isopods to terrestrial life: structure, physiology and behavior. Terr Arthropod Rev 4:95–130

    Google Scholar 

  42. Hurley DE (1968) Transition from water to land in amphipod crustaceans. Am Zool 8:327–353

    Google Scholar 

  43. Janvier P, Clément G (2010) Palaeontology: muddy tetrapod origins. Nature 463:40–41

    PubMed  CAS  Google Scholar 

  44. Jass J, Klausmeier B (2000) Endemics and immigrants: North American terrestrial isopods (Isopoda, Oniscidea) north of Mexico. Crustaceana 73:771–799

    Google Scholar 

  45. Johnson EW, Briggs DEG, Suthren RJ et al (1994) Non-marine arthropod traces from the subaereal Ordivician Borrowdale volcanic group, English Lake District. Geol Mag 131:395–406

    Google Scholar 

  46. Kaiser A, Klok CJ, Socha JJ et al (2007) Increase in tracheal investment with beetle size supports hypothesis of oxygen limitation on insect gigantism. PNAS 104:13198–13203

    PubMed  CAS  Google Scholar 

  47. Labandeira CC (1997) Insect mouthparts: ascertaining the paleobiology of insect feeding strategies. Annu Rev Ecol Syst 28:153–193

    Google Scholar 

  48. Labandeira CC (2006) The four phases of plant-arthropod associations in deep time. Geol Acta 4:409–438

    Google Scholar 

  49. Labandeira C (2007) The origin of herbivory on land: initial patterns of plant tissue consumption by arthropods. Insect Sci 14:259–275

    Google Scholar 

  50. Labandeira CC, Sepkoski JJ (1993) Insect diversity in the fossil record. Science 261(5119):310–315

    PubMed  CAS  Google Scholar 

  51. Lins LSF, Ho SYW, Wilson GDF, Lo N (2012) Evidence for Permo-Triassic colonisation of the deep sea by isopod crustaceans. Biol Lett 8(6):979–982

    PubMed  Google Scholar 

  52. Linsenmair KE (1974) Some adaptations of the desert woodlouse Hemilepistus reaumuri (Isopoda, Oniscoidea) to desert environment. Verh Gesell Ökol 4:183–185

    Google Scholar 

  53. Little C (1983) The colonisation of land: origins and adaptations of terrestrial animals. Cambridge University Press, Cambridge

    Google Scholar 

  54. MacArthur RH, Wilson EO (2001) The theory of Island biogeography. Princeton University Press, Princeton

    Google Scholar 

  55. Markham JC (1986) Evolution and zoogeography of the Isopoda Bopyridae, parasites of Crustacea Decapoda. In: Gore RH, Heck KL (eds) Crustacean biogeography. Balkema, Rotterdam, pp 143–164

    Google Scholar 

  56. Mattern D (2003) New aspects in the phylogeny of the Oniscidea inferred from molecular data. In: Sfenthourakis S, Araujo de PB, Hornung E et al (eds) The biology of terrestrial Isopods V. Crustaceana Monogr, vol 2, pp 23–37

  57. Michel-Salzat A, Bouchon D (2000) Phylogenetic analysis of mitochondrial LSU rRNA in oniscids. C R Acad Sci 323:827–837

    CAS  Google Scholar 

  58. Morris SF (1979) A new fossil terrestrial isopod with implications for the East African Miocene land form. Bull Br Mus nat Hist (Geol) 32(1):71–75

    Google Scholar 

  59. Néraudeau D (2008) Nouveaux regards sur l’évolution et la biodiversité passée. In: Grappin C, Cardin P, Goffé B et al (eds) Terre, Planète mystérieuse, Le Cherche Midi éd, Paris, pp 128–137

  60. Paris OH (1965) Vagility of P32-labeled isopods in grassland. Ecology 46:635–648

    Google Scholar 

  61. Perkovsky EE, Zosimovich VY, Vlaskin AP (2010) Rovno amber. In: Penney D (ed) Biodiversity of fossils in amber from the major world deposits. Siri Scientific Press, Manchester, pp 116–136

    Google Scholar 

  62. Perrichot V (2004) Early Cretaceous amber from south-western France: insight into the Mesozoic litter fauna. Geol Acta 2:9–22

    Google Scholar 

  63. Poinar GO (1994) The range of life in amber: significance and implications in DNA studies. Cell Mol Life Sci 50(6):536–542

    CAS  Google Scholar 

  64. Polz H (2005) Zwei neue Asselarten (Crustacea: Isopoda: Scutocoxifera) aus den Plattenkalken von Brunn (Oberkimmeridgium, Mittlere Frankenalb). Archaeopteryx 23:67–81

    Google Scholar 

  65. Polz H (2007) Proidotea vemerensis n.sp. (Isopoda, Valvifera, Chaetiliidae) on an early Palaeogene glacigenic pebble from Fehmarn Island, North Germany. Verh Naturwiss Ver Hamb 43:65–79

    Google Scholar 

  66. Polz H, Schweigert G, Maisch MW (2006) Two new species of Palaega Isopoda: Cymothoida: Cirolanidae) from the Upper Jurassic of the Swabian Alb, South Germany. Stutt Beitr Naturk Ser B 362:1–17

    Google Scholar 

  67. Racheboeuf PR, Schram FR, Vidal M (2009) New malacostracan crustacea from the Carboniferous (Stephanian) Lagerstätte of Montceau-les-Mines, France. J Paleont 83(4):624–629

    Google Scholar 

  68. Rasmussen HW, Jakobsen SL, Collins JSH (2008) Raninidae infested by parasitic Isopoda (Epicaridea). Bull Mizunami Fossil Mus 34:31–49

    Google Scholar 

  69. Regier JC, Shultz JW, Kambic RE (2005) Pancrustacean phylogeny: hexapods are terrestrial crustaceans and maxillopods are not monophyletic. Proc R Soc Lond B 272:395–401

    Google Scholar 

  70. Regier JC, Shultz JW, Zwick A et al (2010) Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature 463:1079–1083

    PubMed  CAS  Google Scholar 

  71. Rolfe WDI (1969) Arthropleurida and Arthropoda incertae sedis. In: Moore RC (ed) Treatise on invertebrate paleontology part R. Geological Society of America, Washington, pp 607–625

  72. Roman ML, Dalens H (1999) Ordre des Isopodes (Epicarides exclus) (Isopoda Latreille, 1817). In: Forest (ed) Traité de Zoologie—Anatomie, Systématique, Biologie (Grassé) Tome VII, Fascicule III A: Crustacés Péracarides, Monaco, pp 177–237

  73. Ross CA, Ross JRP (1988) Late Paleozoic transgressive-regressive deposition. In: Wilgus CK, Hastings BS, Ross CA et al (eds) Sea-level changes: an integrated approach. Society of Economic Paleontologists and Mineralogists Special Publication 42, Oklahoma, pp 227–247

  74. Ross A, Mellish C, York P, Crighton B (2010) Burmese Amber. In: Penney D (ed) Biodiversity of fossils in amber from the major world deposits. Siri Scientific Press, Manchester, pp 208–235

    Google Scholar 

  75. Schmalfuss H (1980) Die ersten Landasseln aus Dominikanischem Bernstein mit einer systematisch-phylogenetischen Revision der Familie Sphaeroniscidae (Stuttgarter Bernsteinsammlung: Crustacea, Isopoda, Oniscoidea). Stutt Beitr Naturk Ser B 61:1–12

    Google Scholar 

  76. Schmalfuss H (1984) Two new species of the terrestrial isopod genus Pseudarmadillo from Dominican amber (Amber-Collection Stuttgart: Crustacea, Isopoda, Pseudarmadillidae). Stutt Beitr Naturk Ser B 102:1–14

    Google Scholar 

  77. Schmalfuss H (1989) Phylogenetics in Oniscidea. Monit Zool Ital 4:3–27

    Google Scholar 

  78. Schmalfuss H (2003) World catalog of terrestrial isopods (Isopoda: Oniscidea). Stutt Beitr Naturk Ser A 654:1–341

    Google Scholar 

  79. Schmidt C (2008) Phylogeny of the terrestrial Isopoda (Oniscidea): a review. Arthr Syst Phyl 66(2):191–226

    Google Scholar 

  80. Schmidt AR, Dilcher DL (2007) Aquatic organisms as amber inclusions and examples from a modern swamp forest. Proc Natl Acad Sci USA 104(42):16581–16585

    PubMed  CAS  Google Scholar 

  81. Schmidt C, Leistikow A (2004) Catalogue of genera of the terrestrial Isopoda (Crustacea: Isopoda: Oniscidea). Steenstrupia 28(1):1–118

    Google Scholar 

  82. Schmidt C, Wägele JW (2001) Morphology and evolution of respiratory structures in the pleopod exopodites of terrestrial Isopoda (Crustacea, Isopoda, Oniscidea). Acta Zool 82:315–330

    Google Scholar 

  83. Schmidt AR, Jancke S, Lindquist EE et al (2012) Arthropods in amber from the Triassic Period. PNAS. doi:10.1073/pnas.1208464109

    Google Scholar 

  84. Schram FR (1970) Isopod from the Pennsylvanian of Illinois. Science 169(3948):854–855

    PubMed  CAS  Google Scholar 

  85. Schram FR (1974) Paleozoic Peracarida of North America. Fieldiana Geol 33(6):95–124

    Google Scholar 

  86. Schultz GA (1994) Typhlotricholigioides and Mexiconiscus from Mexico and Cylindroniscus from North America (Isopoda: Oniscidea: Trichoniscidae). J Crust Biol 14(4):763–770

    Google Scholar 

  87. Schumann H, Wendt H (1989) Zur Kenntnis der tierischen Inklusen des Sächsischen Bernsteins. Dtsch Ent Z 36(1–3):33–44

    Google Scholar 

  88. Scott AC, Stephenson J, Chaloner WG (1992) Interaction and coevolution of plants and arthropods during the Palaeozoic and Mesozoic. Phil Trans R Soc Lond B 336:129–165

    Google Scholar 

  89. Selden PA (2001) Terrestrialization of animals. In: Briggs DEG, Crowther PR (eds) Palaeobiology II: a synthesis. Blackwell, Oxford, pp 71–74

    Google Scholar 

  90. Selden PA, Edwards D (1989) Colonisation of the land. In: Allen KC, Briggs DEG (eds) Evolution and the fossil record. Belhaven, London, pp 122–152

    Google Scholar 

  91. Sepkoski JJ (2000) Crustacean biodiversity through the marine fossil record. Contrib Zool 69(4):213–222

    Google Scholar 

  92. Serrano ML, Vega FJ, Coutino MA (2007) Terrestrial isopods included in Miocene amber from Chiapas, Mexico. Geological Society of America, 2007 annual meeting, Colorado 39(6):76–77

    Google Scholar 

  93. Shachak M, Chapman EA, Steinberger Y (1976) Feeding, energy flow and soil turnover in the desert isopod, Hemilepistus reaumuri. Oecologia 24:57–69

    Google Scholar 

  94. Shear WA, Kukalová-Peck J (1990) The ecology of Paleozoic terrestrial arthropods: the fossil evidence. Can J Zool 68:1807–1834

    Google Scholar 

  95. Siveter D, Williams M, Peel JS et al (1996) Bradoriida (Arthropoda) from the early Cambrian of North Greenland. T Roy Soc Edin Earth 86:113–121

    Google Scholar 

  96. Spahr U (1993) Ergänzungen und Berichtigungen zu R. Keilbachs Bibliographie und Liste der Bernsteinfossilien—Verschiedene Tiergruppen, ausgenommen Insecta und Araneae. Stutt Beitr Naturk Ser B 194:1–77

    Google Scholar 

  97. Srivastava GP, Shukla M, Kumar P et al (2006) Record of pillbug (Armadillidium) and millipede (Polyxenus) remains from the resin lumps of Warkali Formation (Upper Tertiary), Kerala Coast. J Geol Soc India 67:715–719

    Google Scholar 

  98. Steemans P, Petus E, Breuer P et al (2012) Palaeozoic innovations in the micro- and megafossil plant record: from the earliest plant spores to the earliest seeds. In: Talent JA (ed) Earth and life, global biodiversity, extinction intervals and biogeographic perturbations through time. Springer, NewYork, pp 437–477

    Google Scholar 

  99. Tabacaru I (2002) L’adaptation à la vie aquatique d’un remarquable trichoniscide cavernicole, Cantabroniscus primitivus Vandel, et le problème de la monophylie des isopodes terrestres. Trav Inst Spéol “Émile Racovitza” 37–38:115–131

  100. Tabacaru I, Danielopol DL (1996) Phylogénie des Isopodes terrestres. Comptes Rendus de l’Académie des Sciences, Sciences de la vie 319:71–80

  101. Uchman A, Hu B, Wang Y, Song H (2011) The trace fossil Diplopodichnus from the Lower Jurassic lacustrine sediments of central China and the isopod Armadillidium vulgare (Pillbug) lebensspuren as its recent analogue. Ichnos 18(3):147–155

    Google Scholar 

  102. Väinölä R, Witt JDS, Grabowski M et al (2008) Global diversity of amphipods (Amphipoda; Crustacea) in freshwater. Hydrobiologia 595:241–255

    Google Scholar 

  103. Van Straelen W (1928) Contributions à l’étude des isopodes méso-et cénozoïques. Mem Acad Roy Belg Cl Sci 9:1–68

    Google Scholar 

  104. Vandel A (1943) Essai sur l’origine, l’évolution et la classification des Oniscoidea. Bull Biol France Belge 30:1–143

    Google Scholar 

  105. Vandel A (1946) Crustacés isopodes terrestres (Oniscoïdea) épigés et cavernicoles du Portugal: étude des récoltes de Monsieur A. de Barros Machado. An Fac Cienc Univ Porto 30:135–427

    Google Scholar 

  106. Vandel A (1960) Faune de France 64: les Isopodes terrestres, première partie. Lechevallier, Paris

    Google Scholar 

  107. Vandel A (1962) Faune de France 66: les Isopodes terrestres, deuxième partie. Lechevallier, Paris

    Google Scholar 

  108. Vandel A (1965) Sur l’existence d’Oniscoïdes très primitifs menant une vie aquatique et sur le polyphylétisme des isopodes terrestres. Ann Speleol 20:489–518

    Google Scholar 

  109. Vicalvi MA, Ferreira CS, Fernandes ACS (1989) Possíveis Isópodes (Crustacea) na Formacão Irati (Permiano), São Mateus do Sul, Paraná. An Acad Bras Ci 61(1):85–91

    Google Scholar 

  110. Vogt G (2012) Abbreviation of larval development and extension of brood care as key features of the evolution of freshwater Decapoda. doi:10.1111/j.1469-185X.2012.00241.x (in press)

  111. Wägele JW (1989) Evolution und phylogenetisches system der Isopoda: Stand der Forschung und neue Erkenntnisse. Zoologica 140:1–262

    Google Scholar 

  112. Walossek D (1999) On the Cambrian diversity of Crustacea. In: Schram FR, Von Vaupel Klein JC (ed) Crustaceans and the biodiversity crisis: Proceedings of fourth international Crustacean Congress. Brill Academic Publishers, Amsterdam, pp 3–27

  113. Warburg MR (1968) Behavioral adaptations of terrestrial isopods. Am Zool 8(3):545–559

    Google Scholar 

  114. Warburg MR (1993) Evolutionary biology of land isopods. Springer, Berlin

    Google Scholar 

  115. Weitschat W, Wichard W (2010) Baltic Amber. In: Penney D (ed) Biodiversity of fossils in amber from the major world deposits. Siri Scientific Press, Manchester, pp 80–115

    Google Scholar 

  116. Weitschat W, Brandt A, Coleman CO et al (2002) Taphocoenosis of an extraordinary arthropod community in Baltic amber. Mitt Geol-Paläont Inst Univ Hamburg 86:189–210

    Google Scholar 

  117. Wetzer R (2002) Mitochondrial genes and isopod phylogeny (Peracarida: Isopoda). J Crust Biol 22(1):1–14

    Google Scholar 

  118. White WB, Culver DC (2012) Encyclopedia of Caves, 2nd edn. Academic Press, London

    Google Scholar 

  119. Williams M, Leng ML, Stephenson MH et al (2006) Evidence that Early Carboniferous ostracods colonised coastal flood plain brackish water environments. Palaeogeogr Palaeoclimateol Palaeoecol 230:299–318

    Google Scholar 

  120. Wilson GDF (1999) Some of the deep-sea fauna is ancient. Crustaceana 72:1019–1030

    Google Scholar 

  121. Wilson GDF (2008) Global diversity of isopod crustaceans (Crustacea; Isopoda) in freshwater. Hydrobiologia 595:231–240

    Google Scholar 

  122. Wilson GDF (2009) The phylogenetic position of the Isopoda in the Peracarida (Crustacea: Malacostraca). Arthr Syst Phyl 67(2):159–198

    Google Scholar 

  123. Wilson GDF, Paterson JR, Kear BP (2011) Fossil isopods associated with a fish skeleton from the Lower Cretaceous of Queensland, Australia—direct evidence of a scavenging lifestyle in Mesozoic Cymothoida. Palaeontology 54(5):1053–1068

    Google Scholar 

  124. Zimmer M (2002) Nutrition in terrestrial isopods (Isopoda: Oniscidea): an evolutionary-ecological approach. Biol Rev 77:455–493

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Anne Follet, Dr. Cédric Devigne and Dr. Thomas Hegna for their useful comments to improve the manuscript. We also express thanks to Dr. Carys Bennett who help us to improve the English language. P. Broly is supported by a FRIA grant (Fonds pour la Recherche dans l’Industrie et dans l’Agriculture). S. Maillet is grateful to the Institut Catholique de Lille for supporting this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pierre Broly.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Broly, P., Deville, P. & Maillet, S. The origin of terrestrial isopods (Crustacea: Isopoda: Oniscidea). Evol Ecol 27, 461–476 (2013). https://doi.org/10.1007/s10682-012-9625-8

Download citation

Keywords

  • Woodlice
  • Arthropoda
  • Terrestrialization
  • Fossils
  • Paleozoic
  • Carboniferous