Skip to main content
Log in

Does selection intensity increase when populations decrease? Absolute fitness, relative fitness, and the opportunity for selection

  • Ideas & Perspectives
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

The variance in relative fitness, commonly called the “opportunity for selection,” is a measure of the maximum amount of selection that can occur in a population. I review the relation between fitness variance and population growth, showing that fitness variance is higher during periods of population decline. This is true both for survival and for commonly used models for variable descendant number (Poisson, negative binomial, generalized Poisson). Empirical evidence suggests that not just the opportunity for selection but also the actual selection occurring is commonly greater during such periods of population reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson JH, Ward EJ, Carlson SM (2011) A model for estimating the minimum number of offspring to sample in studies of reproductive success. J Hered 102:567–576

    Article  PubMed  Google Scholar 

  • Anscombe F (1949) The statistical analysis of insect counts based on the negative binomial distribution. Biometrics 5:165–173

    Article  PubMed  CAS  Google Scholar 

  • Arnold SJ (1986) Limits on stabilizing, disruptive, and correlational selection set by the opportunity for selection. Am Nat 128:143–146

    Article  Google Scholar 

  • Arnold SJ, Wade MJ (1984a) On the measurement of natural and sexual selection: theory. Evolution 38:709–719

    Article  Google Scholar 

  • Arnold SJ, Wade MJ (1984b) On the measurement of natural and sexual selection: applications. Evolution 38:720–734

    Article  Google Scholar 

  • Barrowclough GF, Rockwell RF (1993) Variance of lifetime reproductive success: estimation based on demographic data. Am Nat 141:281–295

    Article  PubMed  CAS  Google Scholar 

  • Bell G, Collins S (2008) Adaptation, extinction and global change. Evol Appl 1:3–16

    Article  Google Scholar 

  • Bell G, Gonzalez A (2009) Evolutionary rescue can prevent extinction following environmental change. Ecol Lett 12:942–948

    Article  PubMed  Google Scholar 

  • Bell G, Gonzalez A (2011) Adaptation and evolutionary rescue in metapopulations experiencing environmental deterioration. Science 332:1327–1330

    Article  PubMed  CAS  Google Scholar 

  • Boag PT, Grant PR (1981) Intense natural selection in a population of Darwin’s finches (Geospizinae) in the Galápagos. Science 214:82–85

    Article  PubMed  CAS  Google Scholar 

  • Brown D (1988) Components of lifetime reproductive success. In: Clutton-Brock TH (ed) Reproductive success. University of Chicago Press, Chicago, pp 439–453

    Google Scholar 

  • Burt A (1995) The evolution of fitness. Evolution 49:1–8

    Article  Google Scholar 

  • Caswell H (2011) Beyond R0: demographic models for variability of lifetime reproductive output. PLoS ONE 6:e20809

    Article  PubMed  CAS  Google Scholar 

  • Consul PC, Jain G (1973) A generalization of the Poisson distribution. Technometrics 15:791–799

    Article  Google Scholar 

  • Coulson T, Crawley MJ (2004) How average life tables can mislead. In: Clutton-Brock T, Pemberton JM (eds) Soay sheep. Cambridge University Press, Cambridge, pp 328–331

    Google Scholar 

  • Coulson T, Benton TG, Lundberg P, Dall SRX, Kendall BE, Gaillard J-M (2006) Estimating individual contributions to population growth: evolutionary fitness in ecological time. Proc R Soc Lond B Biol Sci 273:547–555

    Article  CAS  Google Scholar 

  • Coulson T, Tuljapurkar S, Childs DZ (2010) Using evolutionary demography to link life history theory, quantitative genetics and population ecology. J Anim Ecol 79:1226–1240

    Article  PubMed  Google Scholar 

  • Crow JF (1958) Some possibilities for measuring selection intensities in man. Hum Biol 30:1–13

    PubMed  CAS  Google Scholar 

  • Crow JF (1962) Population genetics: selection. In: Burdette WJ (ed) Methodology in human genetics. Holden-Day, San Francisco, pp 53–75

    Google Scholar 

  • Crow JF (1989a) Fitness variation in natural populations. In: Hill WG, Mackay TFC, Robertson A (eds) Evolution and animal breeding: reviews on molecular and quantitative approaches in honour of Alan Robertson. CAB International, Wallingford, Oxon, pp 91–97

    Google Scholar 

  • Crow JF (1989b) Update to “Some possibilities for measuring selection intensities in Man”. Hum Biol 61:776–780

    Google Scholar 

  • Downhower JF, Blumer LS, Brown L (1987) Opportunity for selection: an appropriate measure for evaluating variation in the potential for selection? Evolution 41:1395–1400

    Article  Google Scholar 

  • Endler JA (1986) Natural selection in the wild. Princeton University Press, Princeton

    Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, Oxford

    Google Scholar 

  • Fisher RA (1939) Stage of development as a factor influencing the variance in the number of offspring, frequency of mutants and related quantities. Ann Eugen 9:406–408

    Article  Google Scholar 

  • Gibbs HL, Grant PR (1987) Oscillating selection on Darwin’s finches. Nature 327:511–513

    Article  Google Scholar 

  • Gillespie JH (1977) Natural selection for variances in offspring numbers: a new evolutionary principle. Am Nat 111:1010–1014

    Article  Google Scholar 

  • Gomulkiewicz R, Holt RD (1995) When does evolution by natural selection prevent extinction? Evolution 49:201–207

    Article  Google Scholar 

  • Grant BR, Grant PR (1993) Evolution of Darwin’s finches caused by a rare climatic event. Proc R Soc Lond B Biol Sci 251:111–117

    Article  Google Scholar 

  • Grant PR, Grant BR (2000) Non-random fitness variation in two populations of Darwin’s finches. Proc R Soc Lond B Biol Sci 267:131–138

    Article  CAS  Google Scholar 

  • Grant PR, Grant BR (2002) Unpredictable evolution in a 30-year study of Darwin’s finches. Science 296:707–711

    Article  PubMed  CAS  Google Scholar 

  • Hairston NG Jr, Ellner SP, Geber MA, Yoshida T, Fox JA (2005) Rapid evolution and the convergence of ecological and evolutionary time. Ecol Lett 8:1114–1127

    Article  Google Scholar 

  • Haldane JBS, Jayakar S (1963) Polymorphism due to selection of varying direction. J Genet 58:237–242

    Article  Google Scholar 

  • Hedrick P (2005) Large variance in reproductive success and the N e /N ratio. Evolution 59:1596–1599

    PubMed  Google Scholar 

  • Hoekstra HE, Hoekstra JM, Berrigan D, Vignieri SN, Hoang A, Hill CE, Beerli P, Kingsolver JG (2001) Strength and tempo of directional selection in the wild. Proc Natl Acad Sci USA 98:9157–9160

    Article  PubMed  CAS  Google Scholar 

  • Kendall BE, Wittmann ME (2010) A stochastic model for annual reproductive success. Am Nat 175:461–468

    Article  PubMed  Google Scholar 

  • Kendall BE, Fox GA, Fujiwara M, Nogeire TM (2011) Demographic heterogeneity, cohort selection, and population growth. Ecology 92:1985–1993

    Article  PubMed  Google Scholar 

  • Kingsolver JG, Hoekstra HE, Hoekstra JM, Berrigan D, Vignieri SN, Hill CE, Hoang A, Gibert P, Beerli P (2001) The strength of phenotypic selection in natural populations. Am Nat 157:245–261

    Article  PubMed  CAS  Google Scholar 

  • Kingsolver JG, Diamond SE, Siepielski AM, Carlson SM (2012) Synthetic analyses of phenotypic selection in natural populations: lessons, limitations and future directions. Evol Ecol 26:1101–1118

    Google Scholar 

  • Kinnison MT, Unwin MJ, Quinn TP (2008) Eco-evolutionary vs. habitat contributions to invasion in salmon: experimental evaluation in the wild. Mol Ecol 17:405–414

    Article  PubMed  Google Scholar 

  • Kokko H, López-Sepulcre A (2007) The ecogenetic link between demography and evolution: can we bridge the gap between theory and data? Ecology 10:773–782

    Google Scholar 

  • Lande R, Arnold SJ (1983) The measurement of selection on correlated characters. Evolution 37:1210–1226

    Article  Google Scholar 

  • Lavergne S, Mouquet N, Thuiller W, Ronce O (2010) Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Annu Rev Ecol Evol Syst 41:321–350

    Article  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland

    Google Scholar 

  • Matthews B, Narwani A, Hausch S, Nonaka E, Peter H, Yamamichi M, Sullam KE, Bird KC, Thomas MK, Hanley TC (2011) Toward an integration of evolutionary biology and ecosystem science. Ecol Lett 14:690–701

    Article  PubMed  Google Scholar 

  • Melbourne BA, Hastings A (2008) Extinction risk depends strongly on factors contributing to stochasticity. Nature 454:100–103

    Article  PubMed  CAS  Google Scholar 

  • Metcalf CJE, Pavard S (2006) Why evolutionary biologists should be demographers. Trends Ecol Evol 22:205–212

    Article  PubMed  Google Scholar 

  • Mooney H, Cleland E (2001) The evolutionary impact of invasive species. Proc Natl Acad Sci USA 98:5446–5451

    Article  PubMed  CAS  Google Scholar 

  • Orr HA (2009) Fitness and its role in evolutionary genetics. Nat Rev Genet 10:531–539

    Article  PubMed  CAS  Google Scholar 

  • Pelletier F, Clutton-Brock T, Pemberton JM, Tuljapurkar S, Coulson T (2007) The evolutionary demography of ecological change: linking trait variation and population growth. Science 315:1571–1574

    Article  PubMed  CAS  Google Scholar 

  • Pelletier F, Garant D, Hendry A (2009) Eco-evolutionary dynamics. Philos Trans R Soc Lond B Biol Sci 364:1483–1489

    Article  PubMed  CAS  Google Scholar 

  • Pigliucci M, Muller G (2010) Evolution, the extended synthesis. MIT Press, Cambridge

    Google Scholar 

  • Price TD, Grant PR, Gibbs HL, Boag PT (1984) Recurrent patterns of natural selection in a population of Darwin’s finches. Nature 309:787–789

    Article  PubMed  CAS  Google Scholar 

  • Reiss JO (2009) Not by design: retiring Darwin’s watchmaker. University of California Press, Berkeley

    Google Scholar 

  • Rice SH (2008) A stochastic version of the Price equation reveals the interplay of deterministic and stochastic processes in evolution. BMC Evol Biol 8:262

    Article  PubMed  Google Scholar 

  • Schoener TW (2011) The newest synthesis: understanding the interplay of evolutionary and ecological dynamics. Science 331:426–429

    Article  PubMed  CAS  Google Scholar 

  • Siepielski AM, DiBattista JD, Carlson SM (2009) It’s about time: the temporal dynamics of phenotypic selection in the wild. Ecol Lett 12:1261–1276

    Google Scholar 

  • Stover JP, Kendall BE, Fox GA (2012) Demographic heterogeneity impacts density-dependent population dynamics. Theor Ecol 5:1–13

    Article  Google Scholar 

  • Strauss SY, Lau JA, Carroll SP (2006) Evolutionary responses of natives to introduced species: what do introductions tell us about natural communities? Ecol Lett 9:357–374

    Article  PubMed  Google Scholar 

  • Turcotte MM, Reznick DN, Hare JD (2011) The impact of rapid evolution on population dynamics in the wild: experimental test of eco-evolutionary dynamics. Ecol Lett 14:1084–1092

    Article  PubMed  Google Scholar 

  • Visser ME (2008) Keeping up with a warming world; assessing the rate of adaptation to climate change. Proc R Soc Lond B Biol Sci 275:649–659

    Article  Google Scholar 

  • Wade MJ, Arnold SJ (1980) The intensity of sexual selection in relation to male sexual behavior, female choice, and sperm precedence. Anim Behav 28:446–461

    Article  Google Scholar 

  • Wallace AR (1858) On the tendency of varieties to depart indefinitely from the original type. Proc Linn Soc Lond Zool 3:53–62

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John O. Reiss.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reiss, J.O. Does selection intensity increase when populations decrease? Absolute fitness, relative fitness, and the opportunity for selection. Evol Ecol 27, 477–488 (2013). https://doi.org/10.1007/s10682-012-9618-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-012-9618-7

Keywords