Advertisement

Evolutionary Ecology

, Volume 26, Issue 6, pp 1331–1343 | Cite as

Landscape configuration determines gene flow and phenotype in a flightless forest-edge ground-dwelling bush-cricket, Pholidoptera griseoaptera

  • Peter KaňuchEmail author
  • Benjamín Jarčuška
  • Dušana Schlosserová
  • Anna Sliacka
  • Ladislav Paule
  • Anton Krištín
Original Paper

Abstract

Spatial configuration of habitats influences genetic structure and population fitness whereas it affects mainly species with limited dispersal ability. To reveal how habitat fragmentation determines dispersal and dispersal-related morphology in a ground-dispersing insect species we used a bush-cricket (Pholidoptera griseoaptera) which is associated with forest-edge habitat. We analysed spatial genetic patterns together with variability of the phenotype in two forested landscapes with different levels of fragmentation. While spatial configuration of forest habitats did not negatively affect genetic characteristics related to the fitness of sampled populations, genetic differentiation was found higher among populations from an extensive forest. Compared to an agricultural matrix between forest patches, the matrix of extensive forest had lower permeability and posed barriers for the dispersal of this species. Landscape configuration significantly affected also morphological traits that are supposed to account for species dispersal potential; individuals from fragmented forest patches had longer hind femurs and a higher femur to pronotum ratio. This result suggests that selection pressure act differently on populations from both landscape types since dispersal-related morphology was related to the level of habitat fragmentation. Thus observed patterns may be explained as plastic according to the level of landscape configuration; while anthropogenic fragmentation of habitats for this species can lead to homogenization of spatial genetic structure.

Keywords

Population genetics Habitat connectivity Woodland Movement behaviour Orthoptera 

Notes

Acknowledgments

We are deeply grateful to two anonymous reviewers for their extensive and useful comments on an earlier version of the manuscript. This work was funded by Slovak Research and Development Agency (APVV-0497-10) and Slovak Scientific Grant Agency (VEGA 2/0157/11).

Supplementary material

10682_2012_9571_MOESM1_ESM.docx (35 kb)
Supplementary material 1 (DOCX 36 kb)

References

  1. Anderson CD, Epperson BK, Fortin MJ, Holderegger R, James PMA, Rosenberg MS, Scribner KT, Spear S (2010) Considering spatial and temporal scale in landscape-genetic studies of gene flow. Mol Ecol 19:3565–3575PubMedCrossRefGoogle Scholar
  2. Arens P, Wernke-Lenting JH, Diekötter T, Rothenbühler C, Speelmans M, Hendrickx F, Smulders MJM (2005) Isolation and characterization of microsatellite loci in the dark bush cricket, Pholidoptera griseoaptera (Tettigoniidae). Mol Ecol Notes 5:413–415CrossRefGoogle Scholar
  3. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, Université de Montpellier II, MontpellierGoogle Scholar
  4. Belovsky GE, Slade JB (1993) The role of vertebrate and invertebrate predators in a grasshopper community. Oikos 68:193–201CrossRefGoogle Scholar
  5. Berggren Å, Carlson A, Kindvall O (2001) The effect of landscape composition on colonization success, growth rate and dispersal in introduced bush-crickets Metrioptera roeseli. J Anim Ecol 70:663–670CrossRefGoogle Scholar
  6. Berggren Å, Birath B, Kindvall O (2002) Effect of corridors and habitat edges on dispersal behavior, movement rates, and movement angles in Roesel’s bush-cricket (Metrioptera roeseli). Conserv Biol 16:1562–1569CrossRefGoogle Scholar
  7. Berteaux D, Réale D, McAdam AG, Boutin S (2004) Keeping pace with fast climate change: can arctic life count on evolution? Integr Comp Biol 44:140–151PubMedCrossRefGoogle Scholar
  8. Bonte D, Hovestadt T, Poethke HJ (2010) Evolution of dispersal polymorphism and local adaptation of dispersal distance in spatially structured landscapes. Oikos 119:560–566CrossRefGoogle Scholar
  9. Bonte D, van Dyck H, Bullock JM, Coulon A, Delgado M, Gibbs M, Lehouck V, Matthysen E, Mustin K, Saastamoinen M, Schtickzelle N, Stevens VM, Vandewoestijne S, Baguette M, Barton K, Benton TG, Chaput-Bardy A, Clobert J, Dytham C, Hovestadt T, Meier CM, Palmer SCF, Turlure C, Travis JMJ (2011) Costs of dispersal. Biol Rev doi. doi: 10.1111/j.1469-185X.2011.00201.x Google Scholar
  10. Bowler DE, Benton TG (2005) Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biol Rev 80:205–225PubMedCrossRefGoogle Scholar
  11. Brouwers NC, Newton AC (2009) The influence of habitat availability and landscape structure on the distribution of wood cricket (Nemobius sylvestris) on the Isle of Wight, UK. Landscape Ecol 24:199–212CrossRefGoogle Scholar
  12. Brouwers NC, Newton AC (2010) The influence of barriers and orientation on the dispersal ability of wood cricket (Nemobius sylvestris) (Orthoptera: Gryllidae). J Insect Conserv 14:313–317CrossRefGoogle Scholar
  13. Brouwers NC, Newton AC, Bailey S (2011) The dispersal ability of wood cricket (Nemobius sylvestris) (Orthoptera: Gryllidae) in a wooded landscape. Eur J Entomol 108:117–125Google Scholar
  14. Burrows M, Morris O (2003) Jumping and kicking in bush crickets. J Exp Biol 206:1035–1049PubMedCrossRefGoogle Scholar
  15. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631PubMedCrossRefGoogle Scholar
  16. Chevin L-M, Lande R (2011) Adaptation to marginal habitats by evolution of increased phenotypic plasticity. J Evol Biol 24:1462–1476PubMedCrossRefGoogle Scholar
  17. Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Hered 100:106–113PubMedCrossRefGoogle Scholar
  18. Crawford NG (2010) SMOGD: software for the measurement of genetic diversity. Mol Ecol Res 10:556–557CrossRefGoogle Scholar
  19. Detzel P (1998) Die Heuschrecken Baden Württembergs. Verlag Eugen Ulmer GmbH & Co, StuttgartGoogle Scholar
  20. DeWitt TJ, Scheiner SM (2004) Phenotypic plasticity. Functional and conceptual approaches. Oxford University Press, New York, NYGoogle Scholar
  21. Diekötter T, Csencsics D, Rothenbühler C, Billeter R, Edwards PJ (2005) Movement and dispersal patterns in the bush cricket Pholidoptera griseoaptera: the role of developmental stage and sex. Ecol Entomol 30:419–427CrossRefGoogle Scholar
  22. Diekötter T, Speelmans M, Dusoulier F, Van Wingerden WKRE, Malfait JP, Crist TO, Edwards PJ, Dietz H (2007) Effects of landscape structure on movement patterns of the flightless bush cricket Pholidoptera griseoaptera. Environ Entomol 36:90–98PubMedCrossRefGoogle Scholar
  23. Diekötter T, Baveco H, Arens P, Rothenbühler C, Billeter R, Csencsics D, De Filippi R, Hendrickx F, Speelmans M, Opdam P, Smulders MJM (2010) Patterns of habitat occupancy, genetic variation and predicted movement of a flightless bush cricket, Pholidoptera griseoaptera, in an agricultural mosaic landscape. Landscape Ecol 25:449–461CrossRefGoogle Scholar
  24. Girvetz EH, Thorne JH, Berry AM, Jaeger JAG (2008) Integration of landscape fragmentation analysis into regional planning: a statewide multi-scale case study from California, USA. Landscape Urban Plann 86:205–218CrossRefGoogle Scholar
  25. Goudet J (1995) FSTAT (vers. 1.2): a computer program to calculate F-statistics. J Hered 86:85–486Google Scholar
  26. Guido M, Gianelle D (2001) Distribution patterns of four Orthoptera species in relation to microhabitat heterogeneity in an ecotonal area. Acta Oecol 22:175–185CrossRefGoogle Scholar
  27. Hanski I, Eralahti C, Kankare M, Ovaskainen O, Siren H (2004) Variation in migration propensity among individuals maintained by landscape structure. Ecol Lett 7:958–966CrossRefGoogle Scholar
  28. Heidinger IMM, Hein S, Bonte D (2010) Patch connectivity and sand dynamics affect dispersal-related morphology of the blue-winged grasshopper Oedipoda caerulescens in coastal grey dunes. Insect Cons Divers 3:205–212Google Scholar
  29. Hein S, Gombert J, Hovestadt T, Poethke H-J (2003) Movement patterns of the bush cricket Platycleis albopunctata in different types of habitat: matrix is not always matrix. Ecol Entomol 28:432–438CrossRefGoogle Scholar
  30. Holzhauer SIJ, Ekschmitt K, Sander AC, Dauber J, Wolters V (2006) Effect of historic landscape change on the genetic structure of the bush-cricket Metrioptera roeseli. Landscape Ecol 21:891–899CrossRefGoogle Scholar
  31. Humbert JY, Ghazoul J, Richner N, Walter T (2010) Hay harvesting causes high orthopteran mortality. Agri Ecosys Enviro 139:522–527CrossRefGoogle Scholar
  32. Jaquiéry J, Broquet T, Hirzel AH, Yearsley J, Perrin N (2011) Inferring landscape effects on dispersal from genetic distances: how far can we go? Mol Ecol 20:692–705PubMedCrossRefGoogle Scholar
  33. Jordan F, Baldi A, Orci KM, Racz I, Varga Z (2003) Characterizing the importance of habitat patches and corridors in maintaining the landscape connectivity of a Pholidoptera transsylvanica (Orthoptera) metapopulation. Landscape Ecol 18:83–92CrossRefGoogle Scholar
  34. Jost L (2008) G ST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026PubMedCrossRefGoogle Scholar
  35. Keller I, Nentwig W, Largiader CR (2004) Recent habitat fragmentation due to roads can lead to significant genetic differentiation in an abundant flightless ground beetle. Mol Ecol 13:2983–2994PubMedCrossRefGoogle Scholar
  36. Kindvall O (1999) Dispersal in a metapopulation of the bush cricket, Metrioptera bicolor (Orthoptera: Tettigoniidae). J Anim Ecol 68:172–185CrossRefGoogle Scholar
  37. Kindvall O, Petersson A (2000) Consequences of modelling interpatch migration as a function of patch geometry when predicting metapopulation extinction risk. Ecol Model 129:101–109CrossRefGoogle Scholar
  38. Lange R, Durka W, Holzhauer SIJ, Wolters V, Diekötter T (2010) Differential threshold effects of habitat fragmentation on gene flow in two widespread species of bush crickets. Mol Ecol 19:4936–4948PubMedCrossRefGoogle Scholar
  39. Maas S, Detzel P, Staudt A (2002) Gefährdungsanalyse der Heuschrecken Deutschlands. Verbreitungsatlas, Gefährdungseinstufung und Schutzkonzepte. Bundesamt für Naturschutz, Bonn-Bad GodesbergGoogle Scholar
  40. Manni F, Guérard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by “Monmonier’s algorithm”. Hum Biol 76:173–190PubMedCrossRefGoogle Scholar
  41. Marini L, Fontana P, Scotton M, Klimek S (2008) Vascular plant and Orthoptera diversity in relation to grassland management and landscape composition in the European Alps. J Appl Ecol 45:361–370CrossRefGoogle Scholar
  42. McGarigal K, Cushman SA, Neel MC, Ene E (2002) FRAGSTATS: Spatial pattern analysis program for categorical maps. University of Massachusetts, AmherstGoogle Scholar
  43. Moser B, Jaeger JAG, Tappeiner U, Tasser E, Eiselt B (2007) Modification of the effective mesh size for measuring landscape fragmentation to solve the boundary problem. Landscape Ecol 22:447–459CrossRefGoogle Scholar
  44. Mousseau TA, Roff DA (1989) Adaptation to seasonality in a cricket: patterns of phenotypic and genotypic variation in body size and diapause expression along a cline in season length. Evolution 43:1483–1496CrossRefGoogle Scholar
  45. Ortego J, Aguirre MP, Cordero PJ (2012) Genetic and morphological divergence at different spatiotemporal scales in the grasshopper Mioscirtus wagneri (Orthoptera: Acrididae). J Insect Conserv 16:103–110CrossRefGoogle Scholar
  46. Poniatowski D, Fartmann T (2009) Experimental evidence for density-determined wing dimorphism in two bush-crickets (Ensifera: Tettigoniidae). Eur J Entomol 106:599–605Google Scholar
  47. Poniatowski D, Fartmann T (2010) What determines the distribution of a flightless bush-cricket (Metrioptera brachyptera) in a fragmented landscape? J Insect Cons 14:637–645CrossRefGoogle Scholar
  48. Prevedello JA, Vieira MV (2010) Does the type of matrix matter? A quantitative review of the evidence. Biodiv Conserv 19:1205–1223CrossRefGoogle Scholar
  49. R Development Core Team (2008) R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  50. Ranius T (2006) Measuring the dispersal of saproxylic insects: a key characteristic for their conservation. Popul Ecol 48:177–188CrossRefGoogle Scholar
  51. Reinhardt K, Köhler G, Maas S, Detzel P (2005) Low dispersal ability and habitat specificity promote extinctions in rare but not in widespread species: the Orthoptera of Germany. Ecography 28:593–602CrossRefGoogle Scholar
  52. Reinhold K (1994) Inheritance of body and testis size in the bushcricket Poecilimon veluchianus Ramme (Orthoptera; Tettigoniidae) examined by means of subspecies hybrids. Biol J Linn Soc 52:305–316CrossRefGoogle Scholar
  53. Ricketts TH (2001) The matrix matters: effective isolation in fragmented landscapes. Am Nat 158:87–99PubMedCrossRefGoogle Scholar
  54. Ronce O (2007) How does it feel to be like a rolling stone? Ten questions about dispersal evolution. Annu Rev Ecol Evol Syst 38:231–253CrossRefGoogle Scholar
  55. Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: where are we now? Mol Ecol 19:3496–3514PubMedCrossRefGoogle Scholar
  56. Szulkin M, Bierne N, David P (2010) Heterozygosity-fitness correlations: a time for reappraisal. Evolution 64:1202–1217PubMedGoogle Scholar
  57. Thomas CD (2000) Dispersal and extinction in fragmented landscapes. Proc R Soc Lond B 267:139–145CrossRefGoogle Scholar
  58. Van Dyck H, Baguette M (2005) Dispersal behaviour in fragmented landscapes: routine or special movements? Basic Apl Ecol 6:535–545CrossRefGoogle Scholar
  59. van Oosterhout C, Hutchinson W, Wills D, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  60. Vandewoestijne S, Schtickzelle N, Baguette M (2008) Positive correlation between genetic diversity and fitness in a large, well-connected metapopulation. BMC Biol 6:46PubMedCrossRefGoogle Scholar
  61. Walsh S, Metzger D, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513PubMedGoogle Scholar
  62. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  63. Whitman DW (2008) The significance of body size in the Orthoptera: a review. J Orthop Res 17:117–134CrossRefGoogle Scholar
  64. Whitman DW, Ananthakrishnan TN (2009) Phenotypic plasticity in insects. Mechanisms and consequences. Science Publishers, EnfieldCrossRefGoogle Scholar
  65. Zar JH (1999) Biostatistical Analysis. Prentice Hall, NJGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Peter Kaňuch
    • 1
    Email author
  • Benjamín Jarčuška
    • 1
  • Dušana Schlosserová
    • 2
  • Anna Sliacka
    • 1
  • Ladislav Paule
    • 2
  • Anton Krištín
    • 1
  1. 1.Institute of Forest EcologySlovak Academy of SciencesZvolenSlovakia
  2. 2.Faculty of ForestryTechnical University in ZvolenZvolenSlovakia

Personalised recommendations