Game theoretic model of brood parasitism in a dung beetle Onthophagus taurus

Abstract

We present a game theoretic model of brood parasitism in the dung beetle Onthophagus taurus. Female O. taurus engage in brood parasitism when they attack a brood ball made by another female, destroy the existing egg and place one of their own eggs to develop within the existing dung ball. Brood parasitism is more costly than other forms of kleptoparasitism because an individual loses the total investment in an offspring. In this paper, we outline the behaviors involved in brood ball production and provide time estimates of those behaviors. The model is then used to predict when it is beneficial to steal the brood ball created by another female and when it is beneficial for a female to create her own. We also investigate how long a female should guard her eggs.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Agnarsson I (2002) Sharing a web: on the relation of sociality and kleptoparasitism in theridiid spiders (therididae, araneae). J Arachnol 30:181–188

    Article  Google Scholar 

  2. Anderson MG, Hauber M (2007) A recognition-free mechanism for reliable rejection of brood parasites. Trends Ecol Evol 22(6):283–286

    PubMed  Article  Google Scholar 

  3. Barnard CJ, Sibly (1981) Producers and scroungers: a general model and its application to captive flocks of house sparrows. Anim Behav 29:543–555

    Article  Google Scholar 

  4. Bertran J, Margalida A (2004) Interactive behaviour between Bearded Vultures Gypaetus barbatus and Common Ravens Corvus corax in the nesting sites: predation risk and kleptoparasitism. Ardeola 51:269–274

    Google Scholar 

  5. Broom M, Ruxton GD (1998) Evolutionarily stable stealing: game theory applied to kleptoparasitism. Behav Ecol 9:397–403

    Article  Google Scholar 

  6. Broom M, Ruxton GD (2003) Evolutionarily stable kleptoparasitism: consequences of different prey types. Behav Ecol 14:23–33

    Article  Google Scholar 

  7. Broom M, Rychtář J (2007) The evolution of a kleptoparasitic system under adaptive dynamics. J Math Biol 54:151–177

    PubMed  Article  CAS  Google Scholar 

  8. Carbone C, Frame L, Frame G et al (2005) Feeding success of African wild dogs (Lycaon pictus) in the Serengeti: the effects of group size and kleptoparasitism. J Zool 266:153–161

    Article  Google Scholar 

  9. Clutton-Brock TH (1992) The evolution of parental case. Princeton University Press, Princeton, NJ

  10. Cooper WE, Perez-Mellado V (2003) Kleptoparasitism in the Balearic lizard, Podarcis lilfordi. Amphibia-Reptilia 24:219–224

    Article  Google Scholar 

  11. Davies NB, deBrooke ML (1998) Cuckoos versus hosts: experimental evidence for coevolution. In: Rothstein SI, Robinson SK (eds) Parasitic birds and their host: studies in coevolution. Oxford University Press, Oxford, pp 59–79

  12. Davies NB, de Brooke ML, Kacelnik A (1996) Recognition errors and probability of parasitism determine whether reed warblers should accept of reject mimetic eggs. Proc R Soc Lond Biol Sci B (263):925–931

  13. Dies JI, Dies B (2005) Kleptoparasitism and host responses in a Sandwich Tern colony of eastern Spain. Waterbirds 28:167–171

    Article  Google Scholar 

  14. Fincher GT, Woodruff RE (1975) A European dung beetle, Onthophagus taurus Schreber, new to the U.S. (Coleoptera: Scarabaeidae). Coleopt Bull 29:349–350

    Google Scholar 

  15. Fink LS (1986) Costs and benefits of maternal behaviour in the green lynx spider. Anim Behav 34:1051–1061

    Article  Google Scholar 

  16. González-Megías A, Sánchez-Pinero F (2003) Effect of brood parasitism on host reproductive success: evidence from larval interactions among dung beetles. Popul Ecol 134:195–202

    Google Scholar 

  17. González-Megías A, Sánchez-Pinero F (2004) Response of host species to brood parasitism in dung beetles: importance of nest location by parasitic species. Funct Ecol 18:914–924

    Article  Google Scholar 

  18. Halffter G, Edmunds WG (1982) The nesting behavior of dung beetles (Scarabaeidae). An ecological and evolutive approach. Instituto de Ecologica, Mexico City

  19. Hamilton IM (2002) Kleptoparasitism and the distribution of unequal competitors. Behav Ecol 13:260–267

    Article  Google Scholar 

  20. Hamilton WE, Dill LM (2003) The use of territorial gardening versus kleptoparasitims by a tropical reef fish (Kyphosus cornelii) is influenced by territory dependability. Behav Ecol 14:561–568

    Article  Google Scholar 

  21. Hunt J, Simmons LW (2000) Maternal and paternal effects on offspring phenotype in the dung beetle Onthophagus taurus. Evolution 54:936–941

    PubMed  CAS  Google Scholar 

  22. Hunt J, Simmons LW (2002a) Behavioral dynamics of biparental care in the dung beetle Onthophagus taurus. Anim Behav 64:65–75

    Article  Google Scholar 

  23. Hunt J, Simmons LW (2002b) The genetics of maternal care: direct and indirect genetic effects on phenotype in the dung beetle Onthophagus taurus. Proc Natl Acad Sci USA 99:6828–6832

    PubMed  Article  CAS  Google Scholar 

  24. Hunt J, Simmons LW (2002c) Confidence of paternity and parental care: covariation revealed through the experimental manipulation of the mating system of the beetle Onthophagus taurus. J Evol Biol 15:784–795

    Article  Google Scholar 

  25. Hunt J, Simmons LW (2004) Optimal maternal investment in the dung beetle Onthophagus taurus?. Behav Ecol Sociobiol 55:302–312

    Article  Google Scholar 

  26. Hunt J, Kotiaho JS, Tomkins JL (1999) Dung pad residence time covaries with male morphology in the dung beetle Onthophagus taurus. Ecol Entomol 24:174–180

    Article  Google Scholar 

  27. Hunt J, Simmons LW, Kotiaho JS (2002) A cost of maternal care in the dung beetle Onthophagus taurus. J Evol Biol 15:57–64

    Article  Google Scholar 

  28. Iyengar EV (2002) Sneaky snails and wasted worms: kleptoparasitism by Trichotropis cancellata (Mollusca, Gastropoda) on Serpula columbiana (Annelida, Polychaeta). Mar Ecol Prog Ser 244:153–162

    Article  Google Scholar 

  29. Krebs JR, Davies NB (1993) An introduction to behavioural ecology, 3rd edn. Blackwell, London

    Google Scholar 

  30. Lotem A, Rothstein SI (1995) Cuckoo-host evolution: from snapshots of an arms races to the documentation of microevolution. Trends Ecol Evol 10: 436–437

    Article  Google Scholar 

  31. Lotem A, Nakamura H (1998) Evolutionary equilibria in avian brood parasitism. An alternative to the ‘arms race-evolutionary lag’ concept. In: Rothstein SI, Robinson SK (eds) Parasitic birds and their hosts: studies in coevolution. Oxford University Press, New York, pp 223–235

    Google Scholar 

  32. May RM, Robinson SK (1985) Population dynamics of avian brood parasitism. Am Nat 126(4): 475–494

    Article  Google Scholar 

  33. Moczek AP, Cochrane J (2006) Intraspecific female brood parasitism in the dung beetle Onthophagus taurus. Ecol Entomol 31:316–321

    Article  Google Scholar 

  34. Muller JK, Eggert AK, Dressel J (1990) Intraspecific brood parasitism in the burying beetles Necrophorus vespilloides. Anim Behav 40:491–499

    Article  Google Scholar 

  35. Reader T (2003) Strong interactions between species of phytophagous fly: a case of intraguild kleptoparasitism. Oikos 103:101–112

    Article  Google Scholar 

  36. Ruxton GD, Broom M (1999) Evolution of kleptoparasitism as a war of attrition. J Evol Biol 12:755–759

    Article  Google Scholar 

  37. Servidio MR, Lande R (2003) Coevolution of an avian host and its parasitic cuckoo. Evolution 57(5): 1164–1175

    Google Scholar 

  38. Sirot E (2000) An evolutionarily stable strategy for aggressiveness in feeding groups. Behav Ecol 11:351–356

    Article  Google Scholar 

  39. Smith JNM, Cook TL, Rothstein SI, Robinson SK, Sealy SG (2000) Ecology and management of cowbirds and their hosts. University of Texas Press, Austin, TX

    Google Scholar 

  40. Stillman RA, Goss-Custard JD, Caldow RWG (1997) Modelling interference from basic foraging behaviour. J Anim Ecol 66:692–703

    Article  Google Scholar 

  41. Steinbauer MJ, Wardhaugh KG (1995) Effects of formalin treatment and dung consistency on hatching and establishment of larvae of Onthophagus taurus (Schreber), Bubas bison (L.) and Onitis belial (F.) (Coleoptera: Scarabaeidae). J Austral Entomol Soc 34:31–35

    Article  Google Scholar 

  42. Stephens DW, Brown JS, Ydenberg RC (eds) (2007) Foraging: behaviour and ecology. Chicago University Press, Chicago

  43. Yom-Tov Y (2001) An updated list and some comments on the occurrence of intraspecific nest parasitism in birds. Ibis 143: 133–143

    Article  Google Scholar 

  44. Zink AZ (2000) The evolution of intraspecific brood parasitism in birds and insects. Am Nat 155(3):395–405

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the NSF grant 0634182. The authors would like to thank Dr. M. Broom (Department of Mathematics, University of Sussex, Brighton BN1 9RF, UK) for useful discussion and comments on the original version of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. Rychtář.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Crowe, M., Fitzgerald, M., Remington, D.L. et al. Game theoretic model of brood parasitism in a dung beetle Onthophagus taurus . Evol Ecol 23, 765–776 (2009). https://doi.org/10.1007/s10682-008-9271-3

Download citation

Keywords

  • Kleptoparasitism
  • ESS
  • Game theory
  • Strategy