Skip to main content
Log in

Evidence for UV-based sensory exploitation in Australian but not European crab spiders

  • Original Paper
  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Abstract

Some crab spiders reflect UV-light, thereby creating a deceptive signal that attracts prey to the flowers that they sit on. We conducted a survey of several Australian and European species of crab spiders and found that UV-reflection is common in Australian species but absent from European species. Furthermore, honeybees are attracted to UV-reflecting Australian spiders while they are either indifferent to or repelled by European crab spiders. We do not know if UV-reflection evolved once or several times independently in crab spiders endemic to Australia or whether UV-reflective spiders arrived in Australia more recently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andrews K, Reed SM, Masta SE (2007) Spiders fluoresce variably across many taxa. Biol Lett 3:265–267

    Article  PubMed  Google Scholar 

  • Blackledge TA, Wenzel JW (1999) Do stabilimenta in orb webs attract prey or defend spiders? Behav Ecol 10:372–376

    Article  Google Scholar 

  • Briscoe AD, Chittka L (2001) The evolution of color vision in insects. Ann Rev Entomol 46:471–510

    Article  CAS  Google Scholar 

  • Bruce MJ, Heiling AM, Herberstein ME (2005) Spider signals: are web decorations visible to birds and bees? Biol Lett 1:299–302

    Article  PubMed  Google Scholar 

  • Bruce MJ, Herberstein ME, Elgar MA (2001) Signalling conflict between prey and predator attraction. J Evol Biol 14:786–794

    Article  Google Scholar 

  • Chittka L (1996) Optimal sets of color receptors and color opponent systems for coding of natural objects in insect vision. J Theor Biol 181:179–196

    Article  Google Scholar 

  • Chittka L (2001) Camouflage of predatory crab spiders on flowers and the colour perception of bees (Aranida: Thomisidae/Hymenoptera: Apidae). Entomol Gen 25:181–187

    Google Scholar 

  • Chittka L, Shmida A, Troje N, Menzel R (1994) Ultraviolet as a component of flower reflections, and the colour perception of hymenoptera. Vis Res 34:1489–1508

    Article  PubMed  CAS  Google Scholar 

  • Craig CL, Bernard GD (1990) Insect attraction to ultraviolet-reflecting spider webs and web decorations. Ecology 71:616–623

    Article  Google Scholar 

  • Craig CL, Ebert K (1994) Colour and pattern in predator-prey interactions – the bright body colours and patterns of a tropical orbspinning spider attract flower-seeking prey. Funct Ecol 8:616–620

    Article  Google Scholar 

  • Dawkins MS, Guildford T (1991) The corruption of honest signalling. Anim Behav 41:865–873

    Article  Google Scholar 

  • Dyer AG, Chittka L (2004) Biological significance of distinguishing between similar colours in spectrally variable illumination: bumblebees (Bombus terrestris) as a case study. J Comp Physiol A 190:105–114

    Article  CAS  Google Scholar 

  • Eberhard WG (1977) Aggressive chemical mimicry by a bolas spider. Science 198:1173–1175

    Article  PubMed  Google Scholar 

  • Endler JA (1993) The color of light in forests and its implications. Ecol Monogr 63:1–27

    Article  Google Scholar 

  • Giurfa M, Nunez J, Chittka L, Menzel R (1995) Colour preferences of flower naive honeybees. J Comp Physiol A 177:247–249

    Article  Google Scholar 

  • Goldsmith TH (1990) Optimization, constraint and history in the evolution of eyes. Q Rev Biol 65:281–332

    Article  PubMed  CAS  Google Scholar 

  • Hart NS (2001) The visual ecology of avian photoreceptors. Prog Retin Eye Res 20:675–703

    Article  PubMed  CAS  Google Scholar 

  • Hart NS, Partridge JC, Cuthill IC, Bennett ATD (2000) Visual pigments, oil droplets, ocular media and cone photoreceptor distribution in two species of passerine bird: the blue tit (Parus caeruleus L.) and the blackbird (Turdus merula L.). J Comp Physiol A 186:375–387

    Article  PubMed  CAS  Google Scholar 

  • Heiling AM, Herberstein ME (2004) Predator-prey coevolution: Australian native bees avoid their spider predators. P Roy Soc B 271:S196–S198

    Article  Google Scholar 

  • Heiling AM, Herberstein ME, Chittka L (2003) Crab-spiders manipulate flower signals. Nature 421:334

    Article  PubMed  CAS  Google Scholar 

  • Heiling AM, Cheng K, Chittka L, Goeth A, Herberstein ME (2005a) The role of UV in crab spider signals: effects on perception by prey and predators. J Exp Biol 208:3925–3931

    Article  PubMed  Google Scholar 

  • Heiling AM, Chittka L, Cheng K, Herberstein ME (2005b) Colouration in crab spiders: substrate choice and prey attraction. J Exp Biol 208:1785–1792

    Article  PubMed  Google Scholar 

  • Heiling AM, Cheng K, Herberstein ME (2006) Picking the right spot: crab spiders position themselves on flowers to maximise prey attraction. Behaviour 143:957–968

    Article  Google Scholar 

  • Herberstein ME, Craig CL, Coddington JA, Elgar MA (2000) The functional significance of silk decorations of orb-web spiders: a critical review of the empirical evidence. Biol Rev 75:649–669

    PubMed  CAS  Google Scholar 

  • Hoese FJ, Law EAJ, Rao D, Herberstein ME (2006) Distinctive yellow bands on a sit-and-wait predator: prey attractant or camouflage? Behaviour 143:763–781

    Article  Google Scholar 

  • Hughes M (2000) Deception with honest signals: signal residuals and signal function in snapping shrimp. Behav Ecol 6:614–623

    Article  Google Scholar 

  • Jackson R, Pollard S (1996) Predatory behavior of jumping spiders. Ann Rev Entomol 41:287–308

    Article  CAS  Google Scholar 

  • Jackson RR, Wilcox S (1990) Aggressive mimicry, prey-specific predatory behaviour and predator-recognition in the predator-prey interactions of Portia fimbriata and Euryattus sp., jumping spiders from Queensland. Behav Ecol Sociobiol 26:111–119

    Article  Google Scholar 

  • Johnstone RA (1995) Sexual selection, honest advertisement and the handicap principle: reviewing the evidence. Biol Rev 70:1–65

    Article  PubMed  CAS  Google Scholar 

  • Kevan P, Giurfa M, Chittka L (1996) Why are there so many and so few white flowers? Trends Plant Sci 1:280–284

    Article  Google Scholar 

  • Kotiaho JS (2000) Testing the assumptions of conditional handicap theory: costs and condition dependence of a sexually selected trait. Behav Ecol Sociobiol 48:188–194

    Article  Google Scholar 

  • Li D, Lim MLM, Seah WK, Tay SL (2004) Prey-attraction as a possible function of discoid stabilimenta of juvenile orb-spinning spiders. Anim Behav 68:629–635

    Article  Google Scholar 

  • Lunau K (1996) Signalling functions of floral colour patterns for insect flower visitors. Zool Anz 235:11–30

    Google Scholar 

  • Lunau K (2000) The ecology and evolution of visual pollen signals. Plant Syst Evol 222:89–111

    Article  Google Scholar 

  • Lunau K, Wacht S, Chittka L (1996) Colour choices of naive bumble bees and their implications for colour perception. J Comp Physiol A 178:477–489

    Article  Google Scholar 

  • Menzel R, Greggers U (1985) Natural phototaxis and its relationship to colour vision in honeybees. J Comp Physiol A 157:311–321

    Article  Google Scholar 

  • Oxford GS, Gillespie RG (1998) Evolution and ecology of spider coloration. Ann Rev Entomol 43:619–643

    Article  CAS  Google Scholar 

  • Reader T, Higginson AD, Barnard CJ, Gilbert FS (2006) The effects of predation risk from crab spiders on bee foraging behavior. Behav Ecol 17:933–939

    Article  Google Scholar 

  • Schaefer HM, Schaefer V, Levey DJ (2004) How plant-animal interactions signal new insights into communication. Trends Ecol Evol 19:577–584

    Article  Google Scholar 

  • Spaethe J, Tautz J, Chittka L (2001) Visual constraints in foraging bumblebees: flower size and color affect search time and flight behavior. Proc Nat Acad Sci USA 98:3898–3903

    Article  PubMed  CAS  Google Scholar 

  • Stuart-Fox D (2005) Deception and the origin of honest signals. Trends Ecol Evol 20:521–523

    Article  PubMed  Google Scholar 

  • Szamado S (2000) Cheating as a mixed strategy in a simple model of aggressive communication. Anim Behav 59:221–230

    Article  PubMed  Google Scholar 

  • Szymkowiak P (2007) Redescription of Australian crab spider Diaea pulleinei Rainbow, 1915 (Araneae: Thomisidae). Zootaxa 1425:11–20

    Google Scholar 

  • Théry M, Casas J (2002) Predator and prey views of spider camouflage. Nature 415:133

    Article  PubMed  Google Scholar 

  • Théry M, Debut M, Gomez D, Casas J (2005) Specific color sensitivities of prey and predator explain camouflage in different visual systems. Behav Ecol 16:25–29

    Article  Google Scholar 

  • Tso IM (1996) Stabilimentum of the garden spider Argiope trifasciata: a possible prey attractant. Anim Behav 52:183–191

    Article  Google Scholar 

  • Weiss MR (1991) Floral colour changes as cues for pollinators. Nature 354:227–229

    Article  Google Scholar 

  • Yeargan KV (1994) Biology of bolas spiders. Ann Rev Entomol 39:81–99

    Article  Google Scholar 

  • Zahavi A (1975) Mate selection: a selection for a handicap. J Theor Biol 53:205–214

    Article  PubMed  CAS  Google Scholar 

  • Zuk M, Kolluru GR (1998) Exploitation of sexual signals by predators and parasitoids. Q Rev Biol 73:415–438

    Article  Google Scholar 

Download references

Acknowledgements

We thank Mike Gray for identifying the spiders, Luciano Beheregaray and Volker Framenau for helpful comments, the University of Erlangen for logistic support, the Australian Research Council (DP0449673 to ME Herberstein and K Cheng) and the Austrian Science Foundation (J2249 to AM Heiling) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Herberstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herberstein, M.E., Heiling, A.M. & Cheng, K. Evidence for UV-based sensory exploitation in Australian but not European crab spiders. Evol Ecol 23, 621–634 (2009). https://doi.org/10.1007/s10682-008-9260-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10682-008-9260-6

Keywords

Navigation