Evolutionary Ecology

, Volume 22, Issue 5, pp 617–636 | Cite as

MHC-associated mating strategies and the importance of overall genetic diversity in an obligate pair-living primate

  • Nina Schwensow
  • Joanna Fietz
  • Kathrin Dausmann
  • Simone SommerEmail author
Original Paper


Mate choice is one of the most important evolutionary mechanisms. Females can improve their fitness by selectively mating with certain males. We studied possible genetic benefits in the obligate pair-living fat-tailed dwarf lemur (Cheirogaleus medius) which maintains life-long pair bonds but has an extremely high rate of extra-pair paternity. Possible mechanisms of female mate choice were investigated by analyzing overall genetic variability (neutral microsatellite marker) as well as a marker of adaptive significance (major histocompatibility complex, MHC-DRB exon 2). As in human medical studies, MHC-alleles were grouped to MHC-supertypes based on similarities in their functional important antigen binding sites. The study indicated that females preferred males both as social and as genetic fathers for their offspring having a higher number of MHC-alleles and MHC-supertypes, a lower overlap with female’s MHC-supertypes as well as a higher genome wide heterozygosity than randomly assigned males. Mutual relatedness had no influence on mate choice. Females engaged in extra-pair mating shared a significant higher number of MHC-supertypes with their social partner than faithful females. As no genetic differences between extra-pair young (EPY) and intra-pair young (IPY) were found, females might engage in extra-pair mating to ‘correct’ for genetic incompatibility. Thus, we found evidence that mate choice is predicted in the first place by the ‘good-genes-as-heterozygosity hypothesis’ whereas the occurrence of extra-pair matings supports the ‘dissassortative mating hypothesis’. To the best of our knowledge this study represents the first investigation of the potential roles of MHC-genes and overall genetic diversity in mate choice and extra-pair partner selection in a natural, free-living population of non-human primates.


Mate choice MHC class II Microsatellites Pair-living lemur Extra-pair partner Cheirogaleus medius Madagascar 



We are grateful to the “Commission Tripartite” of the Malagasy Government, the “Laboratoire de Primatologie et des Vertébrés de l´Université d´Antananarivo”, the “Parc Botanique et Zoologique de Tsimbazaza”, the “Ministère pour la Production Animale” and the “Département des Eaux et Forêts” for their collaboration and permission to work in Madagascar. Many thanks to the ‘Centre de Formation Professionnelle Forestière de Morondava’, B. Rakotosamimanana, R. Rasoloarison, and L. Razafimanantsoa for logistical support, and to the German Primate Centre (DPZ) for the opportunity to work at the field station. We thank I. Tomaschweski for technical assistance in the lab, A. Hapke and H. Zischler for introducing microsatellite analyses and J. Ganzhorn for unflagging support. Two anonymous reviewers provided helpful comments on a former version of this manuscript. This study was made possible by the German Science Foundation (So 428/4-1, So 428/4-2).


  1. Alexander J, Stimson WH (1988) Sex hormones and the course of parasitic infection. Parasitol Today 4:189–193CrossRefGoogle Scholar
  2. Andersson M (1994) Sexual selection. Princeton, New JerseyGoogle Scholar
  3. Apanius V, Penn D, Slev P, Ruff LR, Potts WK (1997) The nature of selection on the major histocompatibility complex. Crit Rev Immunol 17:179–224PubMedGoogle Scholar
  4. Bernatchez L, Landry C (2003) MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? J Evol Biol 16:363–377PubMedCrossRefGoogle Scholar
  5. Bertoni R, Sidney J, Fowler P et al (1997) Human histocompatibility leukocyte antigen-binding supermotifs predict broadly cross-reactive cytotoxic T lymphocyte responses in patients with acute hepatitis. J Clin Invest 100:503–513PubMedCrossRefGoogle Scholar
  6. Birkhead TR, Møller AP (1998) Sperm competition and sexual selection. Academic Press, LondonGoogle Scholar
  7. Bowen L, Aldridge BM, Gulland F, van Bonn W, DeLong R, Melin S, Lowenstine LJ, Stott JL, Johnson ML (2004) Class II multiformity generated by variable MHC-DRB region configurations in the California sea lion (Zalophus californiasus). Immunogenetics 56:12–27PubMedCrossRefGoogle Scholar
  8. Bowen L, Aldridge BM, DeLong R, Melin S, Buckles EL, Gulland F, Lowenstine LJ, Stott JL, Johnson ML (2005) An immunogenetic basis for the high prevalence of urogenital cancer in a free-ranging population of California sea lions (Zalophus californianus). Immunogenetics 56:846–848PubMedCrossRefGoogle Scholar
  9. Brown JL (1997) A theory of mate choice based on heterozygosity. Behav Biol 8:60–65Google Scholar
  10. Brown JL (1999) The new heterozygosity theory of mate choice and the MHC. Genetica 104:215–221CrossRefGoogle Scholar
  11. Brown RE, Singh PB, Roser B (1987) The major histocompatibility complex and the chemosensory recognition of individuality in rats. Phys Behav 40:65–73CrossRefGoogle Scholar
  12. Brown JH, Jardetzky TS, Saper MA et al (1988) A hypothetical model of foreign antigen binding site of class II histocompatibility molecules. Nature 332:845–850PubMedCrossRefGoogle Scholar
  13. Brown JH, Jardetzky TS, Gorga JC et al (1993) Three-dimensional structure of the human class II histocompatibility antigen HLA DR1. Nature 364:33–39PubMedCrossRefGoogle Scholar
  14. Carrington M, Nelson GW, Martin MP, Kissner T, Vlahov D, Goedert JJ, Kaslow R (1999) HLA and HIV-1: heterozygote advantage and B*35*-Cw*04 disadvantage. Science 283:1748–1752PubMedCrossRefGoogle Scholar
  15. Clarke B, Kirby DR (1966) Maintenance of histocompatibility polymorphisms. Nature 211:999–1000PubMedCrossRefGoogle Scholar
  16. Cohas A, Yoccoz NG, Da Silva A, Goossens B, Allainé D (2006) Extra-pair paternity in the monogamous Alpine marmot (Marmota marmota): the roles of social setting and female mate choice. Behav Ecol Sociobiol 59:597–605CrossRefGoogle Scholar
  17. Colegrave N, Kotiaho JS, Tomkins J (2002) Mate choice or polyandry: reconciling genetic compatibility and good genes sexual selection. Evol Ecol Res 4:911–917Google Scholar
  18. Coltman DW, Slate J (2003) Microsatellite measures of inbreeding: a meta-analysis. Evolution 57:971–983PubMedGoogle Scholar
  19. Dausmann KH, Glos J, Ganzhorn JU, Heldmaier G (2004) Hibernation in a tropical primate. Nature 429:825–826PubMedCrossRefGoogle Scholar
  20. Ditchkoff SS, Lochmiller RL, Masters BS, Hoofer SR, Van den Bussche RA (2001) Major-histocompatibility-complex-associated variation in secondary sexual traits of white-tailed deer (Odocoileus virginianus): evidence for goog-genes advertisement. Evolution 55:616–625PubMedCrossRefGoogle Scholar
  21. Doherty PC, Zinkernagel RM (1975) Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 256:50–52PubMedCrossRefGoogle Scholar
  22. Dorak MT, Lawson T, Machulla HGK, Mills KI, Burnett AK (2002) Increased heterozygosity for MHC class II lineages in newborn males. Genes Immun 3:263–269PubMedCrossRefGoogle Scholar
  23. Doxiadis GGM, Otting N, de Groot NG, Bontrop RE (2001) Differential evolutionary MHC class II strategies in humans and rhesus macaques: relevance for biomedical studies. Immunol Rev 183:76–85PubMedCrossRefGoogle Scholar
  24. Doytchinova IA, Flower DR (2005) In silico identification of supertypes for class II MHCs. J Immunol 174:7085–7095PubMedGoogle Scholar
  25. Edwards SV, Hedrick PW (1998) Evolution and ecology of MHC molecules: from genomics to sexual selection. Trends Ecol Evol 13:305–311CrossRefGoogle Scholar
  26. Eggert F, Muller-Ruchholtz W, Ferstl R (1999) Olfactory cues associated with the major histocompatibility complex. Genetica 104:191–197CrossRefGoogle Scholar
  27. Egid K, Brown JL (1989) The major histocompatibility complex and female mating preferences in mice. Anim Behav 38:548–549CrossRefGoogle Scholar
  28. Ekblom R, Saether SA, Grahn M et al (2004) Major histocompatibility complex variation and mate choice in a lekking bird, the great snipe (Gallinago media). Mol Ecol 13:3821–3828PubMedCrossRefGoogle Scholar
  29. Eklund A (1997) The major histocompatibility complex and mating preferences in wild house mice (Mus domesticus). Behav Ecol 8:630–634CrossRefGoogle Scholar
  30. Evans JP, Magurran EA (2000) Multiple benefits of multiple mating in guppies. PNAS 97:10074–10076PubMedCrossRefGoogle Scholar
  31. Fietz J (1999a) Monogamy as a rule rather than exception in nocturnal lemurs: the case of the fat-tailed dwarf lemur, Cheirogaleus medius. Ethology 105:259–272CrossRefGoogle Scholar
  32. Fietz J (1999b) Mating system of Microcebus murinus. Am J Primatol 48:127–133PubMedCrossRefGoogle Scholar
  33. Fietz J, Dausmann KH (2003) Costs and potential benefits of parental care in the nocturnal fat-tailed dwarf lemur (Cheirogaleus medius). Folia Primatol 74:246–258PubMedCrossRefGoogle Scholar
  34. Fietz J, Zischler H, Schwiegk C et al (2000) High rates of extra-pair young in the pair-living fat-tailed dwarf lemur, Cheirogaleus medius. Behav Ecol Sociobiol 49:8–17CrossRefGoogle Scholar
  35. Foerg R (1982) Reproduction in Cheirogaleus medius. Folia Primatol 39:49–62PubMedGoogle Scholar
  36. Foerster K, Delhey K, Johnsen A, Lifjeld JT, Kempenaers B (2003) Females increase offspring heterozygosity and fitness through extra-pair matings. Nature 425:714–717PubMedCrossRefGoogle Scholar
  37. Freeman-Gallant CR, Meguerdichian M, Wheelwright NT, Sellecito SV (2003) Social pairing and female mating fidelity predicted by restriction fragment length polymorphism similarity at the major histocompatibility complex in a songbird. Mol Ecol 12:3077–3083PubMedCrossRefGoogle Scholar
  38. Froeschke G, Sommer S (2005) MHC class II DRB constitution and parasite load in the striped mouse, Rhabdomys pumilio, in the Southern Kalahari. Mol Biol Evol 22:1254–1259PubMedCrossRefGoogle Scholar
  39. Ganzhorn JU, Sorg JP (1996) Ecology and economy of a tropical dry forest in Madagascar. In: Primate Report 46, GöttingenGoogle Scholar
  40. Garside P, Kennedy MW, Wakelin D, Lawrence CE (2000) Immunopathology of intestinal helminth infection. Parasite Immunol 22:605–612PubMedCrossRefGoogle Scholar
  41. Girman DJ, Mills MGL, Geffen E, Wayne RK (1997) A molecular genetic analysis of social structure, dispersal and interpack relationships of the African wild dog (Lycaon pictus). Behav Ecol Sociobiol 40:187–198CrossRefGoogle Scholar
  42. Goossens B, Graziani L, Waits LP et al (1998) Extra-pair paternity in the monogamous Alpine marmot revealed by nuclear DNA microsatellite analysis. Behav Ecol Sociobiol 43:281–288CrossRefGoogle Scholar
  43. Grossman CJ (1984) Regulation of the immune system by sex steroids. Endocr Rev 5:435–455PubMedCrossRefGoogle Scholar
  44. Hamilton WD, Zuk M (1982) Heritable true fitness and bright birds: a role for parasites? Science 218:384–387PubMedCrossRefGoogle Scholar
  45. Hansson B, Westerberg L (2002) On the correlation between heterozygosity and fitness in natural populations. Mol Ecol 11:2467–2474PubMedCrossRefGoogle Scholar
  46. Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620CrossRefGoogle Scholar
  47. Harf R, Sommer S (2005) Association between major histocompatibility complex class II DRB alleles and parasite load in the hairy-footed gerbil, Gerbillurus paeba, in the southern Kalahari. Mol Ecol 14:85–91PubMedCrossRefGoogle Scholar
  48. Hedrick PW, Black FL (1997) HLA and mate selection: no evidence in South Amerindians. Am J Hum Genet 61:505–511PubMedCrossRefGoogle Scholar
  49. Ihara Y (2002) A model for evolution of male parental care and female multiple mating. Am Nat 160:235–244PubMedCrossRefGoogle Scholar
  50. Janeway CA, Travers P (2002) Immunology. Spektrum Akademischer Verlag GmbH, OxfordGoogle Scholar
  51. Klein J (1986) Natural history of the major histocompatibility complex. Wiley & Sons, New YorkGoogle Scholar
  52. Kokko H, Brooks R, Jennions MD, Morley J (2003) The evolution of mate choice and mating biases. Proc Biol Sci 270:653–664PubMedCrossRefGoogle Scholar
  53. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinformatics 5:150–163PubMedCrossRefGoogle Scholar
  54. Landry C, Garant D, Duchesne P, Bernatchez L (2001) ‘Good genes as heterozygosity’: the major histocompatibility complex and mate choice in Atlantic salmon (Salmo salar). Proc R Soc Lond B 268:1279–1285CrossRefGoogle Scholar
  55. Leinders-Zufall T, Brennan P, Widmayer P, Chandramani P, Maul-Pavicic A, Jäger M, Li X-H, Breer H, Zufall F, Boehm T (2004) MHC class I peptides as chemosensory signals in the vomeronasal organ. Science 306:1033–1037PubMedCrossRefGoogle Scholar
  56. Lund O, Nielsen M, Kesmir C et al (2004) Definition of supertypes for HLA molecules using clustering of specificity matrices. Immunogenetics 55:797–810PubMedCrossRefGoogle Scholar
  57. Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655PubMedCrossRefGoogle Scholar
  58. Marshall RC, Buchanan KL, Catchpole C (2003) Sexual selection and individual genetic diversity in a songbird. Proc R Soc Lond B 270:S248–S250CrossRefGoogle Scholar
  59. Mays HLJ, Hill GE (2004) Choosing mates: good genes versus genes that are good fit. Trends Ecol Evol 19:554–559PubMedCrossRefGoogle Scholar
  60. Meyer-Lucht Y, Sommer S (2005) MHC diversity and the association to nematode parasitism in the yellow necked mouse (Apodemus flavicollis). Mol Ecol 14:2233–2243PubMedCrossRefGoogle Scholar
  61. Meyers LA, Bull JJ (2002) Fighting change with change: adaptive variation in an uncertain world. Trends Ecol Evol 17:551–557CrossRefGoogle Scholar
  62. Ober C, Weitkamp L, Cox N, Kostyu D, Sherman D (1997) HLA and mate choice in humans. Am J Hum Genet 61:497–504PubMedCrossRefGoogle Scholar
  63. Ober C, Hyslop T, Elias S, Weitkamp LR, Hauck WW (1998) Human leucocyte antigen matching and fetal loss: results of a 10-year prospective study. Hum Reprod 13:33–38PubMedCrossRefGoogle Scholar
  64. Olsson M, Madsen T, Nordby J et al (2003) Major histocompatibility complex and mate choice in sand lizards. Proc R Soc Lond B 270:S254–S256CrossRefGoogle Scholar
  65. Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989a) Detection of polymorphism of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 86:2766–2700PubMedCrossRefGoogle Scholar
  66. Orita M, Sekiya T, Hayashi K (1989b) Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5:874–879PubMedCrossRefGoogle Scholar
  67. Paterson S, Pemberton JM (1997) No evidence for major histocompatibility complex-dependent mating patterns in a free-living ruminant population. Proc R Soc Lond B 264:1813–1819CrossRefGoogle Scholar
  68. Penn DJ (2002) The scent of genetic compatibility: sexual selection and the major histocompatibiliy complex. Ethology 108:1–21CrossRefGoogle Scholar
  69. Penn DJ, Potts WK (1998) MHC-disassortative mating preferences reversed by cross-fostering. Proc R Soc Lond B 265:1299–1306CrossRefGoogle Scholar
  70. Penn DJ, Potts WK (1999) The evolution of mating preferences and major histocompatibility complex genes. Am Nat 153:145–164CrossRefGoogle Scholar
  71. Piertney SB, Oliver MK (2006) The evolutionary ecology of the major histocompatibility complex. Heredity 96:7–21PubMedGoogle Scholar
  72. Potts WK (2002) Wisdom though immunogenetics. Nat Genet 30:130–131PubMedCrossRefGoogle Scholar
  73. Promislow DE, Smith EA, Pearse L (1998) Adult fitness consequences of sexual selection in Drosophila melanogaster. Proc Natl Acad Sci USA 95:10687–10692PubMedCrossRefGoogle Scholar
  74. Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275CrossRefGoogle Scholar
  75. Reusch TBH, Häberli MA, Aeschlimann PB, Milinski M (2001) Female sticklebacks count alleles in a strategy of sexual selection explaining MHC polymorphism. Nature 414:300–302PubMedCrossRefGoogle Scholar
  76. Reusch TBH, Schaschl H, Wegner KM (2004) Recent duplication and inter-locus gene conversion in major histocompatibility class II genes in a teleost, the three-spined stickleback. Immunogenetics 56:427–437PubMedCrossRefGoogle Scholar
  77. Richardson DS, Komdeur J, Burke T, von Schantz T (2005) MHC-based patterns of social and extra-pair mate choice in the Seychelles warbler. Proc R Soc Lond B 272:759–767CrossRefGoogle Scholar
  78. Roberts SC, Gosling LM (2003) Genetic similarity and quality interact in mate choice decisions by female mice. Nat Genet 35:103–106PubMedCrossRefGoogle Scholar
  79. Roberts SC, Hale ML, Petrie M (2005a) Correlations between heterozygosity and measures of genetic similarity: implications for understanding mate choice. J Evol Biol 19:558–569 doi:  10.111/j.1420–9101.2005.01003.x Google Scholar
  80. Roberts SC, Little AC, Gosling LM et al (2005b) MHC-heterozygosity and human facial attractiveness. Evol Hum Behav 26:213–226CrossRefGoogle Scholar
  81. Robinson J, Waller MJ, Parham P et al (2003) IMGT/HLA and IMGT/MHC: sequence databases for the study of the major histocompatibility complex. Nucleic Acids Res 31:311–314PubMedCrossRefGoogle Scholar
  82. Ryan MJ (1997) Sexual selection and mate choice. In: Krebs JR, Davies NB (eds) Sexual selection and mate choice. Blackwell, Oxford, pp 179–202Google Scholar
  83. Sauermann U, Nürnberg P, Bercovitch FB et al (2001) Increased reproductive success of MH class II heterozygous males among free-ranging rhesus macaques. Hum Genet 108:249–254PubMedCrossRefGoogle Scholar
  84. Schad J, Sommer S, Ganzhorn JU (2004) MHC variability of a small lemur in the littoral forest fragments of southeastern Madagascar. Conserv Genet 5:299–309CrossRefGoogle Scholar
  85. Schad J, Ganzhorn JU, Sommer S (2005) Parasite burden and constitution of major histocompatibility complex in the Malagasy mouse lemur, Microcebus murinus. Evolution 59:439–450PubMedGoogle Scholar
  86. Schwensow N, Fietz J, Dausmann K, Sommer S (2007) Neutral versus adaptive variation in parasite resistance: importance of MHC-supertypes in a free-ranging primate. Heredity. doi:  10.1038/sj.hdy.6800993
  87. Sette A, Sidney J (1999) Nine major HLA class I supertypes account for the vast preponderance of HLA-A and -B polymorphism. Immunogenetics 50:201–212PubMedCrossRefGoogle Scholar
  88. Singh P (1998) The present status of the ‘carrier hypotheses’ for chemosensory recognition of genetic individuality. Genetica 104:231–233PubMedCrossRefGoogle Scholar
  89. Singh PM, Brown RE, Roser B (1987) MHC antigens in urine as olfactory recognition cues. Nature 327:161–164PubMedCrossRefGoogle Scholar
  90. Slate J, Pemberton JM (2002) Comparing molecular measures for detecting inbreeding depression. J Evol Biol 15:20–31CrossRefGoogle Scholar
  91. Sommer S (2003) Effects of habitat fragmentation and changes of dispersal behaviour after a recent population decline on the genetic variability of noncoding and coding DNA of monogamous Madagasy rodent. Mol Ecol 12:2845–2851PubMedCrossRefGoogle Scholar
  92. Sommer S (2005a) Major histocompatibility complex and mate choice in a monogamous rodent. Behav Ecol Sociobiol 58:181–189CrossRefGoogle Scholar
  93. Sommer S (2005b) The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool 2:16PubMedCrossRefGoogle Scholar
  94. Sommer S, Schwab D, Ganzhorn JU (2002) MHC diversity of endemic Malagasy rodents in relation to range contraction and social system. Behav Ecol Sociobiol 51:214–221CrossRefGoogle Scholar
  95. Southwood S, Sidney J, Kondo A et al (1998) Several common HLA-DR types share leagely overlapping peptide binding repertoires. J Immunol 160:3363–3373PubMedGoogle Scholar
  96. Spencer PBS, Horsup AB, Marsh HD (1998) Enhancement of reproductive success through mate choice in a social rock-wallaby, Petrogale assimils (Macropodidae) as revealed by microsatellite markers. Behav Ecol Sociobiol 43:1–9CrossRefGoogle Scholar
  97. Thornhill R, Gangestad S, Miller R et al (2003) Major histocampatibility complex genes, symmetry, and body scent attractiveness in men and women. Behav Ecol 15:668–678CrossRefGoogle Scholar
  98. Thursz MR, Thomas HC, Greenwood BM, Hill AV (1997) Heterozygote advantage for HLA class II-type in hepatitis virus infection. Nat Genet 17:11–12PubMedCrossRefGoogle Scholar
  99. Trachtenberg E, Korber B, Sollars C et al (2003) Advantage of rare HLA supertype in HIV disease progression. Nat Med 9:928–935PubMedCrossRefGoogle Scholar
  100. Travi BL, Osorio Y, Melby PC et al (2002) Gender is a major determinant of the clinical evolution and immune response in hamsters infected with Leishmania spp. Infect Immun 70:2288–2296PubMedCrossRefGoogle Scholar
  101. Tregenza T, Wedell N (2000) Genetic compatibility, mate choice and patterns of parentage: invited Review. Mol Ecol 9:1013–1027PubMedCrossRefGoogle Scholar
  102. Wedekind C, Seebeck T, Bettens F, Paepke AJ (1995) MHC-dependent mate preferences in humans. Proc R Soc Lond B 260:245–249CrossRefGoogle Scholar
  103. Wedekind C, Walker M, Portmann J et al (2004) MHC-linked susceptibility to a bacterial infection, but no MHC-linked cryptic female choice within whitefish. J Evol Biol 17:11–18PubMedCrossRefGoogle Scholar
  104. Wegner KM, Kalbe M, Kurtz J, Reusch TBH, Milinski M (2003) Parasite selection for immunogenetic optimality. Science 301:1343PubMedCrossRefGoogle Scholar
  105. Wenink PW, Groen AF, Roelke-Parker ME, Prins HHT (1998) African buffalo maintain high genetic diversity in the major histocompatibility complex in spite of historically known population bottlenecks. Mol Ecol 7:1315–1322PubMedCrossRefGoogle Scholar
  106. Westerdahl H (2004) No evidence of an MHC-bases female mating preference in great reet warblers. Mol Ecol 13:2465–2470PubMedCrossRefGoogle Scholar
  107. Yamazaki K, Boyse EA, Mike V et al (1976) Control of mating preferences in mice by genes in the major histocompatibility complex. J Exp Med 144:1324–1335PubMedCrossRefGoogle Scholar
  108. Yamazaki K, Yamaguchi M, Baranoski L et al (1979) Recognition among mice: evidence from the use of Y-maze differentially scented by congenic mice of different major histocompatibility types. J Exp Med 150:755–760PubMedCrossRefGoogle Scholar
  109. Yamazaki K, Singer A, Beauchamp GK (1998) Origin, functions and chemistry of H-2 regulated odorants. Genetica 104:235–240PubMedCrossRefGoogle Scholar
  110. Yang Z (1997) PAML: a program package for phylogenetic analysis by maximum likelihood. Cabios 13:555–556PubMedGoogle Scholar
  111. Zeh JA, Zeh DW (1996) The evolution of polyandry I: intragenomic conflict and genetic incompatibility. Proc R Soc Lond B 263:1711–1717CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Nina Schwensow
    • 1
    • 2
  • Joanna Fietz
    • 3
  • Kathrin Dausmann
    • 1
  • Simone Sommer
    • 1
    • 2
    Email author
  1. 1.Animal Ecology & ConservationUniversity of HamburgHamburgGermany
  2. 2.Leibniz-Institute for Zoo- and Wildlife Research (IZW)BerlinGermany
  3. 3.Experimental EcologyUniversity of UlmUlmGermany

Personalised recommendations