Evolutionary Ecology

, 21:229

Fluctuating sex ratios, but no sex-biased dispersal, in a promiscuous fish

Original Paper


Dispersal in birds and mammals tends to be female-biased in monogamous species and male-biased in polygamous species. However results for other taxa, most notably fish, are equivocal. We employed molecular markers and physical tags to test the hypothesis that Atlantic salmon, a promiscuous species with intense male-male competition for access to females, displays male-biased dispersal. We found significant variation in sex ratios and in asymmetric gene flow between neighbouring salmon populations, but little or no evidence for sex-biased dispersal. We show that conditions favouring male dispersal will often be offset by those favouring female dispersal, and that spatial and temporal variation in sex ratios within a metapopulation may favour the dispersal of different sexes in source and sink habitats. Thus, our results reconcile previous discrepancies on salmonid dispersal and highlight the need to consider metapopulation dynamics and sex ratios in the study of natal dispersal of highly fecund species.


Sex ratios Sex-biased dispersal Asymmetric gene flow mtDNA Microsatellites Atlantic salmon Metapopulation 


  1. Aars J, Ims RA (2000) Population dynamic and genetic consequences of spatial density-dependent dispersal in patchy populations. Am Nat 155:252–265PubMedCrossRefGoogle Scholar
  2. Aparicio E, de Sostoa A (1999) Pattern of movements of adult Barbus haasi in a small Mediterranean stream. J Fish Biol 55:1086–1095CrossRefGoogle Scholar
  3. Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci USA 98:4563–4568PubMedCrossRefGoogle Scholar
  4. Bekkevold D, Hansen MM, Mensberg KD (2004) Genetic detection of sex-specific dispersal in historical and contemporary populations of anadromous brown trout Salmo trutta. Mol Ecol 13:1707–1712PubMedCrossRefGoogle Scholar
  5. Birky CW, Fuerst P, Maruyama T (1989) Organelle diversity under migration, mutation and drift: equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparisons to nuclear genes. Genetics 121:613–627PubMedGoogle Scholar
  6. Blundell GM, Ben-David M, Groves P, Bowyers RT, Geffen E (2002) Characteristics of sex-biased dispersal and gene flow in coastal river otters: implications for natural recolonization of extirpated populations. Mol col 11:289–303Google Scholar
  7. Buonaccorsi VP, McDowell JR, Graves JE (2001) Reconciling patterns of inter-ocean molecular variance from four classes of molecular markers in blue marlin (Makaira nigricans). Mol Ecol 10:1179–1196PubMedCrossRefGoogle Scholar
  8. Croft DP, Albanese B, Arrowsmith BJ, Botham M, Webster M, Krause J (2003) Sex-biased movement in the guppy (Poecilia reticulata). Oecologia 137:62–68PubMedCrossRefGoogle Scholar
  9. Cadet C, Ferrière R, Metz JAJ, van Baalen M (2003) The evolution of dispersal under demographic stochasticity. Am Nat 162:427–441PubMedCrossRefGoogle Scholar
  10. Caudill CC (2003) Measuring dispersal in a metapopulation using stable isotope enrichment: high rates of ex-biased dispersal between patches in a mayfly metapopulation. Oikos 101:624–630CrossRefGoogle Scholar
  11. Clobert J, Nichols JD, Danchin E, Dhondt A (2001) Dispersal. Oxford University Press, Oxford, UKGoogle Scholar
  12. Cohen D, Levin SA (1991) Dispersal in patchy environments: the effects of temporal and spatial structure. Theor Popul Biol 39:63–69CrossRefGoogle Scholar
  13. Consuegra S, García de Leániz C, Serdio A, González Morales M, Straus LG, Knox D, Verspoor E (2002) Mitochondrial DNA variation in Pleistocene and modern Atlantic salmon from the Iberian glacial refugium. Mol Ecol 11:2037–2048PubMedCrossRefGoogle Scholar
  14. Consuegra S, Verspoor E, Knox D, García de Leániz C (2005a) Asymmetric gene flow and the evolutionary maintenance of genetic diversity in small, peripheral Atlantic salmon populations. Cons Genetics 6:823–842CrossRefGoogle Scholar
  15. Consuegra S, García de Leániz C, Serdio A, Verspoor E (2005b) Selective exploitation of early running fish may induce genetic and phenotypic changes in Atlantic salmon. J Fish Biol 67(␣Suppl. A):130–146Google Scholar
  16. Dobson FS (1982) Competition for mates and predominant juvenile dispersal in mammals. Anim Behav 30:1183–1192CrossRefGoogle Scholar
  17. Dobson FS, Jones WT (1985) Multiple causes of dispersal. Am Nat 126:855–858CrossRefGoogle Scholar
  18. Escorza-Treviño S, Dizon AE (2000) Phylogeography, intraspecific structure and sex-biased dispersal of Dall’s porpoise, Phocoenoides dalli, revealed by mitochondrial and microsatellite DNA analyses. Mol Ecol 9:1049–1060PubMedCrossRefGoogle Scholar
  19. Favre L, Balloux F, Goudet J, Perrin N (1997) Female-biased dispersal in the monogamous mammal Crocidura russula: evidence from field data and microsatellite patterns. Proc R Soc Lond B264:127–132CrossRefGoogle Scholar
  20. Fleming IA (1996) Reproductive strategies of Atlantic salmon: ecology and evolution. Rev Fish Biol Fish 6:379CrossRefGoogle Scholar
  21. Fleming IA (1998) Pattern and variability in the breeding system of Atlantic salmon (Salmo salar), with comparisons to other salmonids. Can J Fish Aquat Sci 55:59–76CrossRefGoogle Scholar
  22. Fleming IA, Reynolds JD (2004) Salmonid breeding systems. In: Hendry AP, Stearns SC (eds) Evolution illuminated. Salmon and their relatives. New York: Oxford University Press, pp 264–294Google Scholar
  23. Fraser DJ, Lippé C, Bernatchez L. (2004) Consequences of unequal population size, asymmetric gene flow and sex-biased dispersal on population structure in brook charr (Salvelinus fontinalis) Mol Ecol 13:67–80PubMedCrossRefGoogle Scholar
  24. Friedenberg NA (2003) Experimental evolution of dispersal in spatiotemporally variable microcosms. Ecol Lett 6:953–959CrossRefGoogle Scholar
  25. Garant D, Fontaine P-M, Good SP, Dodson JJ, Bernatchez L (2002) The influence of male parental identity on growth and survival of offspring in Atlantic salmon (Salmo salar). Evol Ecol Res 4:537–549Google Scholar
  26. Garant D, Kruuk LEB, Wilkin TA, McCleery RH, Sheldon BC (2005) Evolution driven by differential dispersal within a wild bird population. Nature 433:60–64PubMedCrossRefGoogle Scholar
  27. Gilliam JF, Fraser DF (2001) Movement in corridors: enhancement by predation threat, disturbance, and habitat structure. Ecology 82:258–273CrossRefGoogle Scholar
  28. Glebe BD, Saunders RL (1986) Genetic factors in sexual maturity of cultured Atlantic salmon (Salmo salar) parr and adults reared in sea cages. Can Sp Pub Fish Aquat Sci 89:24–29Google Scholar
  29. Goudet J, Perrin N, Waser P. (2002) Tests for sex-biased dispersal using bi-parentally inherited genetic markers. Mol Ecol 11:1103–1114PubMedCrossRefGoogle Scholar
  30. Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 28:1140–1162CrossRefGoogle Scholar
  31. Hansen MM, Kenchington E, Nielsen EE (2001) Assigning individual fish to populations using microsatellite DNA markers. Fish Fisher 2:93–112CrossRefGoogle Scholar
  32. Hanski I (1999) Metapopulation ecology. Oxford University Press, New YorkGoogle Scholar
  33. Hard JJ, Heard WR (1999) Analysis of straying variation in Alaskan hatchery chinook salmon (Oncorhynchus tshawytscha) following transplantation. Can J Fish Aquat Sci 56:578–589CrossRefGoogle Scholar
  34. Hendry AP (2004) Selection against migrants contributes to the rapid evolution of ecologically dependent reproductive isolation. Evol Ecol Res 6:1219–1236Google Scholar
  35. Hendry AP, Castric V, Kinnison MT, Quinn TP (2004) The evolution of philopatry and dispersal. In: Hendry AP, Stearns SC (eds) Evolution illuminated. Salmon and their relatives. Oxford University Press, New York, pp. 52–91Google Scholar
  36. Hoarau G, Piquet AM T, van der Veer HW, Rijnsdorp AD, Stam WT, Olsen JL (2004) Population structure of plaice (Pleuronectes platessa L.) in northern Europe: a comparison of resolving power between microsatellites and mitochondrial DNA data. J Sea Res 51:183–190CrossRefGoogle Scholar
  37. Holt RD, McPeek MA (1996) Chaotic population dynamics favors the evolution of dispersal. Am Nat 148:709–718CrossRefGoogle Scholar
  38. Holtby LB, Healey MC (1990) Sex-specific life history tactics and risk-taking in coho salmon. Ecology 71:678–690CrossRefGoogle Scholar
  39. Huse G. (1998) Sex-specific life history strategies in capelin (Mallotus villosus). Can J Fish Aquat Sci 55:631–638CrossRefGoogle Scholar
  40. Hutchings JA, Gerber L. (2002) Sex-biased dispersal in a salmonid fish. Proc R Soc Lond B269:2487–2493Google Scholar
  41. Jones MW, Hutchings JA (2001) The influence of male parr body size and mate competition on fertilization success and effective population size in Atlantic salmon. Heredity 86:675–684PubMedCrossRefGoogle Scholar
  42. Kawecki TJ, Holt RD (2002) Evolutionary consequences of asymmetric dispersal rates. Am Nat 160:333–347CrossRefPubMedGoogle Scholar
  43. Knight ME, Van Oppen MJ H, Smith HL, Rico C, Hewitt GM, Turner GF (1999) Evidence for male-biased dispersal in Lake Malawi cichlids from microsatellites. Mol Ecol 8:1521–1527PubMedCrossRefGoogle Scholar
  44. Koizumi I, Yamamoto S, Maekawa K. (2006) Female-biased migration of stream-dwelling Dolly Varden in the Shiisorapuchi River, Hokkaido, Japan. J Fish Biol 68:1513–1529CrossRefGoogle Scholar
  45. Le Galliard J-F, Ferrière R, Clobert J. (2003) Mother-offspring interactions affect natal dispersal in a lizard. Proc R Soc Lond B270:1163–1169CrossRefGoogle Scholar
  46. Leturque H, Rousset F. (2004) Intersexual competition as an explanation for sex-ratio and dispersal biases in polygynous species. Evolution 58:2398–2408PubMedCrossRefGoogle Scholar
  47. Lundqvist H, McKinnell S, Fängstam H, Berglund I. (1994) The effect of time, size and sex on recapture rates and yield after river releases of Salmo salar smolts. Aquaculture 121:245–257CrossRefGoogle Scholar
  48. Massot M, Clobert J. (2000) Processes at the origin of similarities in dispersal behaviour among siblings. J Evol Biol 13:707–719CrossRefGoogle Scholar
  49. Mazluff JM, Balda RP. (1989) Causes and consequences of female biased dispersal in a flock-living bird, the pinyon jay. Ecology 70:316–328CrossRefGoogle Scholar
  50. Morbey Y. (2000) Protandry in Pacific salmon. Can J Fish Aquat Sci 57:1252–1257CrossRefGoogle Scholar
  51. Myers RA (1984) Demographic consequences of precocious maturation of Atlantic salmon (Salmo salar) Can J Fish Aquat Sci 41:1349–1353CrossRefGoogle Scholar
  52. Nagata M, Irvine JR (1997) Differential dispersal patterns of male and female masu salmon fry. J␣Fish Biol 51:601–606CrossRefGoogle Scholar
  53. Okuda N. (1999) Female mating strategy and male brood cannibalism in a sand-dwelling cardinalfish. Anim Behav 58:273–279PubMedCrossRefGoogle Scholar
  54. Palo JU, Lesbarrères D, Schmeller DS, Primmer CR, Merilä J. (2004) Microsatellite marker data suggest sex-biased dispersal in the common frog Rana temporaria. Mol Ecol 13:2865–2869PubMedCrossRefGoogle Scholar
  55. Pardini AT, Jones CS, Noble LR, Kreiser B, Malcolm H, Bruce BD, Stevens JD, Cliff G, Scholl MC, Francis M, Duffy CA J, Martin AP (2001) Sex-biased dispersal of great white sharks. Nature 412:139–140PubMedCrossRefGoogle Scholar
  56. Paterson S, Piertney SB, Knox D, Gilbey J, Verspoor E. (2004) Characterization and PCR multiplexing of novel highly variable tetranucleotide Atlantic salmon (Salmo salar L.) microsatellites. Mol Ecol Notes 4:160–162CrossRefGoogle Scholar
  57. Perrin N, Mazalov V. (1999) Dispersal and inbreeding avoidance. Am Nat 154:282–292PubMedCrossRefGoogle Scholar
  58. Perrin N, Mazalov V. (2000) Local competition, inbreeding, and the evolution of sex-biased dispersal. Am Nat 155:116–127PubMedCrossRefGoogle Scholar
  59. Poethke HJ, Hovestadt T. (2002) Evolution of density-and patch-size-dependent dispersal rates. Proc R Soc Lond B269:637–645CrossRefGoogle Scholar
  60. Prugnolle F, de Meeus T. (2002) Inferring sex-biased dispersal from population genetic tools: a review. Heredity 88:161–165PubMedCrossRefGoogle Scholar
  61. Ranta E, Lummaa V, Kaitala V, Merilä J. (2000) Spatial dynamics of adaptive sex ratios. Ecol Let 3:30–34CrossRefGoogle Scholar
  62. Russell ST, Kelley JL, Graves JA, Magurran AE (2004) Kin structure and shoal composition dynamics in the guppy, Poecilia reticulata. Oikos 106:520–526CrossRefGoogle Scholar
  63. Schleusner CJ, Maughan OE (1999) Mobility of largemouth bass in a desert lake in Arizona. Fish Res 44:175–178CrossRefGoogle Scholar
  64. Schneider S, Roessli D, Excoffier L (2000) ARLEQUIN ver 2.000: a sofware for populations genetics data analysis. Geneve: Genetics and Biometry Laboratory, University of GeneveGoogle Scholar
  65. Schradin C, Lamprecht J. (2000) Female-biased immigration and male peace-keeping in groups of the shell-dwelling cichlid fish Neolamprologus multifasciatus. Behav Ecol Sociobiol 48:236–242CrossRefGoogle Scholar
  66. Schrey AW, Heist EJ (2003) Microsatellite analysis of population structure in the shortfin mako (Isurus oxyrinchus ). Can J Fish Aquat Sci 60:670–675CrossRefGoogle Scholar
  67. Slatkin M. (2005) Seeing ghosts: the effect of unsampled populations on migration rates estimated for sampled populations. Mol Ecol 14:67–73PubMedCrossRefGoogle Scholar
  68. Spidle AP, Quinn TP, Bentzen P. (1998) Sex-biased marine survival and growth in a population of coho salmon. J Fish Biol 52:907–915CrossRefGoogle Scholar
  69. Stiver KA, Dierkes P, Taborsky M, Balshine S. (2004) Dispersal patterns and status change in a co-operatively breeding cichlid Neolamprologus pulcher: evidence from microsatellite analyses and behavioural observations. J Fish Biol 65:981–105CrossRefGoogle Scholar
  70. Taggart JB, McLaren IS, Hay DW, Webb JH, Youngson AF (2001) Spawning success in Atlantic salmon (Salmo salar L.): a long-term DNA profiling-based study conducted in a natural stream. Mol Ecol 10:1047–1060PubMedCrossRefGoogle Scholar
  71. Tamate T, Maekawa K (2004) Female-biased mortality rate and sexual size dimorphism of migratory masu salmon, Oncorhynchus masou. Ecol Freshw Fish 13:96–103CrossRefGoogle Scholar
  72. Taylor MI, Morley JI, Rico C, Balshine S. (2003) Evidence for genetic monogamy and female-biased dispersal in the biparental mouthbrooding cichlid Eretmodus cyanostictus from Lake Tanganyika. Mol Ecol 12:3173–3177PubMedCrossRefGoogle Scholar
  73. Thedinga JF, Wertheimer AC, Heintz RA, Maselko JM, Rice SD (2000) Effects of stock, coded-wire tagging, and transplant on straying of pink salmon (Oncorhynchus gorbuscha) in southeastern Alaska. Can J Fish Aquat Sci 57:2076–2085CrossRefGoogle Scholar
  74. Unwin MJ, Quinn TP (1993) Homing and straying patterns of chinook salmon (Oncorhynchus tshawytscha) from a New Zealand hatchery: spatial distribution of strays and effects of release date. Can J Fish Aquat Sci 50:1168–1175CrossRefGoogle Scholar
  75. Wilson AJ, Hutchings JA, Ferguson MM (2004) Dispersal in a stream dwelling salmonid: inferences from tagging and microsatellite studies. Cons Genetics 5:25–37CrossRefGoogle Scholar
  76. Wilson K, Hardy ICW (2002) Statistical analysis of sex ratios: an introduction. In: Hardy ICW (eds) Sex ratios: concepts and research methods. Cambridge University Press, Cambridge, UK, pp 48–92Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Department of Biological SciencesUniversity of Wales SwanseaSwanseaUK
  2. 2.Gatty Marine InstituteUniversity of St. AndrewsSt. Andrews, FifeScotland, UK

Personalised recommendations