Skip to main content
Log in

Maximizing Eucalyptus pilularis progeny selection using a parentage matrix obtained with microsatellite markers

  • Research
  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Eucalyptus pilularis Smith is renowned for its high-quality wood, rapid growth, and adaptability to diverse soil conditions. This study aimed to evaluate the use of the molecular kinship matrix to estimate genetic parameters for E. pilularis selection and the potential establishment of a base population. The experiment involved 13 provenances and 115 progenies, using a randomized complete block design with five replicates and linear plots consisting of five plants each. Genetic parameters for the traits diameter at breast height (DBH), total height, and volume were evaluated at five years of age using the linear mixed model. Results indicated a survival rate for the population of 73.11%, an average total height of 18.65 m, DBH of 14.28 cm, and volume of 14.57 cm3. By adjusting the kinship matrix, the estimated values of heritability and genetic coefficients of variation decreased, indicating that there would be errors in these estimates and in the genetic gains if the progenies were assumed to be half-siblings. The discrepancy in rankings derived from the conventional half-sibling matrix versus molecular kinship matrix poses a significant challenge for experts in forest species genetic improvement. Our findings indicate not only inflated estimations of genetic parameters and gains, but also disparities in rankings when accounting for true levels of relatedness among individuals based on the molecular matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguiar BI, Freitas MLM, Tavares YR, Tambarussi EV, Zanatto B, Gandara FB, Paludeto JGZ, Silva DYBO, Silva JR, Moraes MLT, Longui EL, Zanata M, Sebbenn AM (2019) Genetic control of silvicultural traits in Balfourodendron riedelianum (ENGL.) ENGL. Silvae Genet 68:73–78. https://doi.org/10.2478/sg-2019-0013

    Article  Google Scholar 

  • Albino JO, Tomazello Filho M (1985) Variação da densidade básica da madeira e produtividade de Eucalyptus spp. Embrapa CPAC, Boletim de Pesquisa 26, Planaltina

  • Alvares CA, Cegatta ÍR, Scolforo HF, Mafia RG (2023) Decision-tree application to predict and spatialize the wood productivity probabilities of Eucalyptus plantations. Forests 14:1334. https://doi.org/10.3390/f14071334

    Article  Google Scholar 

  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JDM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  • Brooker MIH, Kleinig DA (2006) Field Guide to Eucalyptus, 1a. Melbourne, South-eastern Australia

  • Bush D, Kain D, Matheson C, Kanowski P (2011) Marker-based adjustment of the additive relationship matrix for estimation of genetic parameters—an example using Eucalyptus cladocalyx. Tree Genet Genomes 7:23–35. https://doi.org/10.1007/s11295-010-0312-z

    Article  Google Scholar 

  • Cabardo SJ, Langrish TAG (2006) Within-tree variability in the drying properties for blackbutt timber in New South Wales. Maderas Ciencia y Tecnol 8:15–24. https://doi.org/10.4067/S0718-221X2006000100002

    Article  Google Scholar 

  • Caldeira A, Krushe AV, Mareschal L, da Silva P, Nouvellon Y, Campoe O, Stape JL, Montebelo A, Formaglio G, Maire G, Guillemot J, Ranger J, Laclau JP (2023) Low nutrient losses by deep leaching after clearcutting and replanting Eucalyptus plantations in Brazil. For Ecol Manage 534:120866. https://doi.org/10.1016/j.foreco.2023.120866

    Article  Google Scholar 

  • Cappa EP, El-Kassaby YA, Garcia MN, Acuña C, Borralho NM, Grattapaglia D, Marcucci Poltri SN (2013) Impacts of population structure and analytical models in genome-wide association studies of complex traits in forest trees: a case study in Eucalyptus globulus. PLoS ONE 8:e8126. https://doi.org/10.1371/journal.pone.0081267

    Article  CAS  Google Scholar 

  • Cornacini MR, Silva JR, Luz KC, Cambuim J, dos Santos W, de Moraes MLT, de Aguiar AV (2017) Desbaste seletivo em teste de procedências e progênies de Astronium fraxinifolium Schott com base na variabilidade genética Selective thinning in provenance and progeny test of Astronium fraxinifolium Schott based on genetic variability. Scientia Forestalis 45:581–591. https://doi.org/10.18671/scifor.v45n115.15

    Article  Google Scholar 

  • Covarrubias-Pazaran G (2016) Genome-assisted prediction of quantitative traits using the R package sommer. PLoS ONE 11:e0156744. https://doi.org/10.1371/journal.pone.0156744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Araujo MJ, da Rocha GN, Estopa RA, Oberschelp J, da Silva PHM (2022) Conservative or non-conservative strategy to advance breeding generation? A case study in using spatial variation and competition model. Silvae Genetica 72:1–10. https://doi.org/10.2478/sg-2023-0001

    Article  Google Scholar 

  • de Resende M, de Mauro RA (2003) Genética de populações e conservação de animais silvestres. In: Costa BC (ed) Fragmentação florestal e alternativas de desenvolvimento rural na região Centro-Oeste. UCDB, Campo Grande, pp 75–112

    Google Scholar 

  • de Souza S, de Resende M, da Silva H, Higa A (1992) Variabilidade genética e interação genótipo x ambiente envolvendo procedências de Eucalyptus cloesiana F. Muell., em diferentes regiões do Brasil. Revista Árvore, Viçosa 16:1–17

    Google Scholar 

  • Degen B, Müller NA (2023) A simulation study comparing advanced marker-assisted selection with genomic selection in tree breeding programs. G3: Genes, Genomes, Genet 13:jkad164. https://doi.org/10.1093/g3journal/jkad164

    Article  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Faria DA, Mamani EMC, Pappas MR, Pappas GJ Jr, Grattapaglia D (2010) A selected set of EST-derived microsatellites, polymorphic and transferable across 6 species of Eucalyptus. J Hered 101:512–520. https://doi.org/10.1093/jhered/esq024

    Article  CAS  PubMed  Google Scholar 

  • Forrester DI, Smith RGB (2012) Forest ecology and management, 6th edn.

  • Freitas MLM, Sebbenn AM, Zanatto ACS, Moraes E, Hayashi PH, Moraes MLT (2008) Variação e parâmetros genéticos em dois bancos de germoplasma de Tabebuia heptaphylla (Velloso) Toledo. Revista Instituto Florestal 20:13–22

    Google Scholar 

  • Gonçalves JLDM, Alvares CA, Higa AR, Silva LD, Alfenas AC, Stahl J, Ferraz SFB, Lima WP, Brancalion PHS, Hubner A, Bouillet JPD, Laclau JP, Nouvellon Y, Epron D (2013) Integrating genetic and silvicultural strategies to minimize abiotic and biotic constraints in Brazilian eucalypt plantations. For Ecol Manage 301:6–27. https://doi.org/10.1016/j.foreco.2012.12.030

    Article  Google Scholar 

  • Grattapaglia D (2001) Marcadores moleculares em espécies florestais: Eucalyptus como modelo. Recursos Genét e Melhoramento: Plantas 2001:967–1010

    Google Scholar 

  • Grattapaglia D (2022) Twelve years into genomic selection in forest trees: climbing the slope of enlightenment of marker assisted tree breeding. Forests 13:1554. https://doi.org/10.3390/f13101554

    Article  Google Scholar 

  • Henderson CR (1975) Best linear unbiased estimation and prediction under a selection model. Biometrics 31:423. https://doi.org/10.2307/2529430

    Article  CAS  PubMed  Google Scholar 

  • IBÁ (2023) Report 2023—Brazilian Tree Industry. São Paulo: IBA´ —Industria Brasileira de Árvores. pp 91

  • Kang Y, Choi C, Kim JY, Min KD, Kim C (2023) Optimizing genomic selection of agricultural traits using K-wheat core collection. Front Plant Sci 14:1–14. https://doi.org/10.3389/fpls.2023.1112297

    Article  Google Scholar 

  • Kuznetsova A, Brockhoff PB, Christensen RHB (2017) lmerTest package: tests in linear mixed effects models. J Statist Software 82:1–26. https://doi.org/10.18637/jss.v082.i13

    Article  Google Scholar 

  • Köppen W, Geiger R (1928) Klimate der Erde. Verlag Justus Perthes, Gotha

    Google Scholar 

  • Lima BM, Cappa EP, Silva-Junior OB, Garcia C, Mansfield SD, Grattapaglia D (2019) Quantitative genetic parameters for growth and wood properties in Eucalyptus “urograndis” hybrid using near-infrared phenotyping and genome-wide SNP-based relationships. PLoS ONE 14:e0218747. https://doi.org/10.1371/journal.pone.0218747

    Article  CAS  Google Scholar 

  • Machado F, Gomide J, Campos W, Capitani L (1988) Caracterização da madeira de Eucalyptus pilularis e estudos para producao de celuloce kraft. Revista Árvore 12:111–122

    Google Scholar 

  • Martins K, Santos WSDD, Quadros TMC et al (2018) Genetic variation and effective population size of a Myracrodruon urundeuva (Engler) Fr. Allem. provenance and progeny test. J for Res 23:228–236. https://doi.org/10.1080/13416979.2018.1483130

    Article  CAS  Google Scholar 

  • Matthew EW (2012) nadiv: an R package to create relatedness matrices for estimating non-additive genetic variances in animal models. Methods Ecol Evol 3(792–796):2012. https://doi.org/10.1111/j.2041-210X.2012.00213.x

    Article  Google Scholar 

  • Miranda AC, da Silva PH, Moraes ML, Lee DJ, Sebbenn AM (2019) Investigating the origin and genetic diversity of improved Eucalyptus grandis populations in Brazil. Forest Ecol Manag 448:130–138. https://doi.org/10.1016/j.foreco.2019.05.071

    Article  Google Scholar 

  • Pagliarini MK, Kieras WS, Moreira JP et al (2016) Adaptability, stability, productivity and genetic parameters in slash pine second-generation families in early age. Silvae Genetica 65:71–82. https://doi.org/10.1515/sg-2016-0010

    Article  Google Scholar 

  • Paludeto JGZ, Grattapaglia D, Estopa RA, Tambarussi EV (2021) Genomic relationship–based genetic parameters and prospects of genomic selection for growth and wood quality traits in Eucalyptus benthamii. Tree Genet Genomes 38:1–20. https://doi.org/10.1007/s11295-021-01516-9

    Article  CAS  Google Scholar 

  • Pelletier MC, Henson M, Boyton S, Thomas D, Vanclay JK (2008) Genetic variation in shrinkage properties of Eucalyptus pilularis assessed using increment cores and test blocks. NZ J Forest Sci 38:194–210

    Google Scholar 

  • Pereira FB, Boshier DH, Rossini BC, Marino CL, de Freitas MLM, Silva EV, Melchert GF, Sperotto J, Tambarussi EV (2023) Estimativas de parâmetros genéticos para crescimento em progênies de duas procedências de Roupala montana var. brasiliensis (Proteaceae). Revista Do Instituto Florestal 35:113–123. https://doi.org/10.24278/2178-5031.202335107

    Article  Google Scholar 

  • Pereira RC, Davide LC, Ramalho MAP, Andrade HB (2002) Alternatives to improve hybridization efficiency in Eucalyptus breeding programs. Cerne 8:060–069

    Google Scholar 

  • Pimentel-Gomes F, Garcia CH (2002) Estatística aplicada a experimentos agronômicos e florestais: exposição com exemplos e orientações para uso de aplicativos. FEALQ, Piracicaba. pp 309

  • Pásztor YPC (1974) Teste de procedências de Eucalyptus pilularis Sm. na região de Mogi Guaçu. IPEF 8:69–97

    Google Scholar 

  • Pásztor YPC (1983) Teste de procedência de Eucalyptus pilularis SM-Resultados de 13 anos. Silvicultura, São Paulo

    Google Scholar 

  • R Core Team (2023) A language and environment for statistical computing_. R Foundation for Statistical Computing, Vienna, Austria. <https://www.R-project.org/>

  • Resende MDV, Alves RS (2020) Linear, generalized, hierarchical, Bayesian and random regression mixed models in GeneTics/genomics in plant breeding. Funct Plant Breed J 3:121–152. https://doi.org/10.35418/2526-4117/v2n2a1

    Article  Google Scholar 

  • Resende MDV, Duarte JB (2007) Precisão e controle de qualidade em experimentos de avaliação de cultivares. Pesquisa Agropecuária Tropical 37:182–194

    Google Scholar 

  • Resende RT, Resende MDV, Silva FF, Azevedo CF, Takahashi EK, Silva-Junior OB, Grattapaglia D (2017) Regional heritability mapping and genome-wide association identify loci for complex growth, wood and disease resistance traits in Eucalyptus. New Phytol 213:1287–1300. https://doi.org/10.1111/nph.14266

    Article  CAS  PubMed  Google Scholar 

  • Resende MDV (2015) Genética Quantitativa e de População. Suprema, Viçosa – MG

  • Ritland K (1996) Estimators for pairwise relatedness and individual inbreeding coefficients. Genet Res 67:175–185. https://doi.org/10.1017/S0016672300033620

    Article  Google Scholar 

  • Sanchez D, Sadoun SB, Mary-Huard T, Allier A, Moreau L, Charcosset A (2023) Improving the use of plant genetic resources to sustain breeding programs’ efficiency. Proc Natl Acad Sci 120:e2205780119. https://doi.org/10.1073/pnas.2205780119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sexton TR, Henry RJ, McManus LJ et al (2010) Genetic association studies in Eucalyptus pilularis Smith (blackbutt). Aust for 73:254–258. https://doi.org/10.1080/00049158.2010.10676336

    Article  Google Scholar 

  • Shepherd M, Raymond C (2010) Species differentiation and gene flow in the Blackbutts (genus) Eucalyptus subgenus Eucalyptus section Pseudophloius). Conserv Genet 11:1965–1978. https://doi.org/10.1007/s10592-010-0086-8

    Article  Google Scholar 

  • Shepherd M, Sexton TR, Thomas D et al (2010) Geographical and historical determinants of microsatellite variation in Eucalyptus pilularis. Can J for Res 40:1051–1063. https://doi.org/10.1139/X10-049

    Article  CAS  Google Scholar 

  • Silva DYBO, Farias SGGD, Resende RT, Cardoso CR, Silva RB, Tambarussi EV (2023) Genetic variability and ex situ conservation strategies for the neotropical tree Parkia platycephala Benth. Ciência Florestal 33:e64058. https://doi.org/10.5902/1980509864058

    Article  Google Scholar 

  • Silva PHMD, Shepherd M, Grattapaglia D, Sebbenn AM (2015) Use of genetic markers to build a new generation of Eucalyptus pilularis breeding population. Silvae Genetica 64:170–181. https://doi.org/10.1515/sg-2015-0016

    Article  Google Scholar 

  • Silva HD, Pires IE, Araujo FD (1992) Comportamento silvicultural e aptidão para produção de carvão de cinco espécies de Eucalyptus na Região dos Cerrados de Minas Gerais. Embrapa Florestas. Boletim de Pesquisa Florestal, Colombo

  • Silva PHM, Paula RC, Moraes MLT (2018) Melhoramento de populações de eucaliptos, 1a. IPEF, Piracicaba. pp 107

  • Tambarussi EV, Andrejow GMP, Engel M, Roque RH (2022) Estimation of the mating system of Eucalyptus benthamii Maiden at Cambage progeny. Rev Inst Flor 34: 163–171. https://doi.org/10.24278/2178-5031.202234205

    Article  Google Scholar 

  • Tambarussi EV, Pereira FB, da Silva PHM, Lee D, Bush D (2018) Are tree breeders properly predicting genetic gain? A case study involving Corymbia species. Euphytica 214:1–11. https://doi.org/10.1007/s10681-018-2229-9

    Article  Google Scholar 

  • Tambarussi Ev, Silva ED, da Costa RM, Santos JF, Jatzek VA, Resende RT (2023) Growth and survival of Eucalyptus viminalis in a frost-prone site in southern Brazil, and implications for genetic management. New Zealand J Forestry Sci 53:1–13. https://doi.org/10.33494/nzjfs532023x236x

    Article  Google Scholar 

  • Toro MA, García-Cortés LA, Legarra A (2011) A note on the rationale for estimating genealogical coancestry from molecular markers. Genet Sel Evol 43:1–10. https://doi.org/10.1186/1297-9686-43-27

    Article  PubMed  Google Scholar 

  • Ukrainetz NK, Mansfield SD (2020) Assessing the sensitivities of genomic selection for growth and wood quality traits in lodgepole pine using Bayesian models. Tree Genet Genomes 16:14. https://doi.org/10.1007/s11295-019-1404-z

    Article  Google Scholar 

  • Vencovsky R, Barriga P (1992) Genética biométrica no fitomelhoramento. Ribeirão Preto. Sociedade Brasileira de Genética, Ribeirão Preto

  • Wang J (2011) coancestry: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol Ecol Resour 11:141–145. https://doi.org/10.1111/j.1755-0998.2010.02885.x

    Article  PubMed  Google Scholar 

  • Wang J (2017) Estimating pairwise relatedness in a small sample of individuals. Heredity 119:302–313. https://doi.org/10.1038/hdy.2017.52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang P, Jia C, Bush D, Zhou C, Weng Q, Li F, Zhou C, Zhang H (2023) Predicting genetic response to future climate change in Eucalyptus grandis by combining genomic data with climate models. Forest Ecol Manag 549:121492. https://doi.org/10.1016/j.foreco.2023.121492

    Article  Google Scholar 

  • Wright S (1922) Coefficient of inbreeding and relationship. Am Nat 56:330–338

    Article  Google Scholar 

  • Yokomizo GK-I, de Farias Neto JT (2003) Caracterização fenotípica e genotípica de progênies de pupunheira para palmito. Pesq Agrop Brasileira 38:67–72

    Article  Google Scholar 

  • Ziegler ACF, Tambarussi EV (2022) Classifying coefficients of genetic variation and heritability for Eucalyptus spp. Crop Breed Appl Biotechnol 22:e40372222. https://doi.org/10.1590/1984-70332022v22n2a12

    Article  Google Scholar 

Download references

Acknowledgements

A special thanks to the Department of Forest Sciences at ESALQ/USP and to the coordinators of the Experimental Station of Forestry Sciences at LCF/ESALQ/USP, particularly because of their important role in maintaining a large genetic collection of eucalypts. We also thank the companies participating in the Cooperative Program for Forest Breeding of IPEF. Evandro V. Tambarussi and Paulo HM Silva are supported by CNPq research fellowship (grant number 303789/2022-0 and 305290/2023-1). The authors thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for a scholarship granted to the first author.

Funding

grant #15/15651-2, São Paulo Research Foundation (FAPESP)

Author information

Authors and Affiliations

Authors

Contributions

GEAB: Investigation and Writing—Original Draft; FSBP: Project administration and Writing—Review & Editing; PHMS: Data Curation and Writing—Review & Editing; XMO: Writing—Review & Editing, MPBAN: Writing—Review & Editing; DBOS: Writing—Review & Editing; EVT: Investigation, Writing—Review & Editing and Project administration.

Corresponding author

Correspondence to Evandro Vagner Tambarussi.

Ethics declarations

Conflict of interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 49 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brizola, G.E.A., Peres, F.S.B., Silva, P.H.M. et al. Maximizing Eucalyptus pilularis progeny selection using a parentage matrix obtained with microsatellite markers. Euphytica 220, 97 (2024). https://doi.org/10.1007/s10681-024-03356-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10681-024-03356-9

Keywords

Navigation